| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvco3 |
|- ( ( H : A --> B /\ x e. A ) -> ( ( F o. H ) ` x ) = ( F ` ( H ` x ) ) ) |
| 2 |
1
|
3ad2antl2 |
|- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( ( F o. H ) ` x ) = ( F ` ( H ` x ) ) ) |
| 3 |
|
fvco3 |
|- ( ( K : A --> B /\ x e. A ) -> ( ( F o. K ) ` x ) = ( F ` ( K ` x ) ) ) |
| 4 |
3
|
3ad2antl3 |
|- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( ( F o. K ) ` x ) = ( F ` ( K ` x ) ) ) |
| 5 |
2 4
|
eqeq12d |
|- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( ( ( F o. H ) ` x ) = ( ( F o. K ) ` x ) <-> ( F ` ( H ` x ) ) = ( F ` ( K ` x ) ) ) ) |
| 6 |
|
simpl1 |
|- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> F : B -1-1-> C ) |
| 7 |
|
ffvelcdm |
|- ( ( H : A --> B /\ x e. A ) -> ( H ` x ) e. B ) |
| 8 |
7
|
3ad2antl2 |
|- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( H ` x ) e. B ) |
| 9 |
|
ffvelcdm |
|- ( ( K : A --> B /\ x e. A ) -> ( K ` x ) e. B ) |
| 10 |
9
|
3ad2antl3 |
|- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( K ` x ) e. B ) |
| 11 |
|
f1fveq |
|- ( ( F : B -1-1-> C /\ ( ( H ` x ) e. B /\ ( K ` x ) e. B ) ) -> ( ( F ` ( H ` x ) ) = ( F ` ( K ` x ) ) <-> ( H ` x ) = ( K ` x ) ) ) |
| 12 |
6 8 10 11
|
syl12anc |
|- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( ( F ` ( H ` x ) ) = ( F ` ( K ` x ) ) <-> ( H ` x ) = ( K ` x ) ) ) |
| 13 |
5 12
|
bitrd |
|- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( ( ( F o. H ) ` x ) = ( ( F o. K ) ` x ) <-> ( H ` x ) = ( K ` x ) ) ) |
| 14 |
13
|
ralbidva |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( A. x e. A ( ( F o. H ) ` x ) = ( ( F o. K ) ` x ) <-> A. x e. A ( H ` x ) = ( K ` x ) ) ) |
| 15 |
|
f1f |
|- ( F : B -1-1-> C -> F : B --> C ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> F : B --> C ) |
| 17 |
16
|
ffnd |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> F Fn B ) |
| 18 |
|
simp2 |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> H : A --> B ) |
| 19 |
|
fnfco |
|- ( ( F Fn B /\ H : A --> B ) -> ( F o. H ) Fn A ) |
| 20 |
17 18 19
|
syl2anc |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( F o. H ) Fn A ) |
| 21 |
|
simp3 |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> K : A --> B ) |
| 22 |
|
fnfco |
|- ( ( F Fn B /\ K : A --> B ) -> ( F o. K ) Fn A ) |
| 23 |
17 21 22
|
syl2anc |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( F o. K ) Fn A ) |
| 24 |
|
eqfnfv |
|- ( ( ( F o. H ) Fn A /\ ( F o. K ) Fn A ) -> ( ( F o. H ) = ( F o. K ) <-> A. x e. A ( ( F o. H ) ` x ) = ( ( F o. K ) ` x ) ) ) |
| 25 |
20 23 24
|
syl2anc |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( ( F o. H ) = ( F o. K ) <-> A. x e. A ( ( F o. H ) ` x ) = ( ( F o. K ) ` x ) ) ) |
| 26 |
18
|
ffnd |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> H Fn A ) |
| 27 |
21
|
ffnd |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> K Fn A ) |
| 28 |
|
eqfnfv |
|- ( ( H Fn A /\ K Fn A ) -> ( H = K <-> A. x e. A ( H ` x ) = ( K ` x ) ) ) |
| 29 |
26 27 28
|
syl2anc |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( H = K <-> A. x e. A ( H ` x ) = ( K ` x ) ) ) |
| 30 |
14 25 29
|
3bitr4d |
|- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( ( F o. H ) = ( F o. K ) <-> H = K ) ) |