| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fof |
|- ( F : A -onto-> B -> F : A --> B ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> F : A --> B ) |
| 3 |
|
fvco3 |
|- ( ( F : A --> B /\ y e. A ) -> ( ( H o. F ) ` y ) = ( H ` ( F ` y ) ) ) |
| 4 |
2 3
|
sylan |
|- ( ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) /\ y e. A ) -> ( ( H o. F ) ` y ) = ( H ` ( F ` y ) ) ) |
| 5 |
|
fvco3 |
|- ( ( F : A --> B /\ y e. A ) -> ( ( K o. F ) ` y ) = ( K ` ( F ` y ) ) ) |
| 6 |
2 5
|
sylan |
|- ( ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) /\ y e. A ) -> ( ( K o. F ) ` y ) = ( K ` ( F ` y ) ) ) |
| 7 |
4 6
|
eqeq12d |
|- ( ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) /\ y e. A ) -> ( ( ( H o. F ) ` y ) = ( ( K o. F ) ` y ) <-> ( H ` ( F ` y ) ) = ( K ` ( F ` y ) ) ) ) |
| 8 |
7
|
ralbidva |
|- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( A. y e. A ( ( H o. F ) ` y ) = ( ( K o. F ) ` y ) <-> A. y e. A ( H ` ( F ` y ) ) = ( K ` ( F ` y ) ) ) ) |
| 9 |
|
fveq2 |
|- ( ( F ` y ) = x -> ( H ` ( F ` y ) ) = ( H ` x ) ) |
| 10 |
|
fveq2 |
|- ( ( F ` y ) = x -> ( K ` ( F ` y ) ) = ( K ` x ) ) |
| 11 |
9 10
|
eqeq12d |
|- ( ( F ` y ) = x -> ( ( H ` ( F ` y ) ) = ( K ` ( F ` y ) ) <-> ( H ` x ) = ( K ` x ) ) ) |
| 12 |
11
|
cbvfo |
|- ( F : A -onto-> B -> ( A. y e. A ( H ` ( F ` y ) ) = ( K ` ( F ` y ) ) <-> A. x e. B ( H ` x ) = ( K ` x ) ) ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( A. y e. A ( H ` ( F ` y ) ) = ( K ` ( F ` y ) ) <-> A. x e. B ( H ` x ) = ( K ` x ) ) ) |
| 14 |
8 13
|
bitrd |
|- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( A. y e. A ( ( H o. F ) ` y ) = ( ( K o. F ) ` y ) <-> A. x e. B ( H ` x ) = ( K ` x ) ) ) |
| 15 |
|
simp2 |
|- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> H Fn B ) |
| 16 |
|
fnfco |
|- ( ( H Fn B /\ F : A --> B ) -> ( H o. F ) Fn A ) |
| 17 |
15 2 16
|
syl2anc |
|- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( H o. F ) Fn A ) |
| 18 |
|
simp3 |
|- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> K Fn B ) |
| 19 |
|
fnfco |
|- ( ( K Fn B /\ F : A --> B ) -> ( K o. F ) Fn A ) |
| 20 |
18 2 19
|
syl2anc |
|- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( K o. F ) Fn A ) |
| 21 |
|
eqfnfv |
|- ( ( ( H o. F ) Fn A /\ ( K o. F ) Fn A ) -> ( ( H o. F ) = ( K o. F ) <-> A. y e. A ( ( H o. F ) ` y ) = ( ( K o. F ) ` y ) ) ) |
| 22 |
17 20 21
|
syl2anc |
|- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( ( H o. F ) = ( K o. F ) <-> A. y e. A ( ( H o. F ) ` y ) = ( ( K o. F ) ` y ) ) ) |
| 23 |
|
eqfnfv |
|- ( ( H Fn B /\ K Fn B ) -> ( H = K <-> A. x e. B ( H ` x ) = ( K ` x ) ) ) |
| 24 |
15 18 23
|
syl2anc |
|- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( H = K <-> A. x e. B ( H ` x ) = ( K ` x ) ) ) |
| 25 |
14 22 24
|
3bitr4d |
|- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( ( H o. F ) = ( K o. F ) <-> H = K ) ) |