Step |
Hyp |
Ref |
Expression |
1 |
|
coefv0.1 |
|- A = ( coeff ` F ) |
2 |
|
coeadd.2 |
|- B = ( coeff ` G ) |
3 |
|
fveq2 |
|- ( F = G -> ( coeff ` F ) = ( coeff ` G ) ) |
4 |
3 1 2
|
3eqtr4g |
|- ( F = G -> A = B ) |
5 |
|
simp3 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> A = B ) |
6 |
5
|
cnveqd |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> `' A = `' B ) |
7 |
6
|
imaeq1d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> ( `' A " ( CC \ { 0 } ) ) = ( `' B " ( CC \ { 0 } ) ) ) |
8 |
7
|
supeq1d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> sup ( ( `' A " ( CC \ { 0 } ) ) , NN0 , < ) = sup ( ( `' B " ( CC \ { 0 } ) ) , NN0 , < ) ) |
9 |
1
|
dgrval |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) = sup ( ( `' A " ( CC \ { 0 } ) ) , NN0 , < ) ) |
10 |
9
|
3ad2ant1 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> ( deg ` F ) = sup ( ( `' A " ( CC \ { 0 } ) ) , NN0 , < ) ) |
11 |
2
|
dgrval |
|- ( G e. ( Poly ` S ) -> ( deg ` G ) = sup ( ( `' B " ( CC \ { 0 } ) ) , NN0 , < ) ) |
12 |
11
|
3ad2ant2 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> ( deg ` G ) = sup ( ( `' B " ( CC \ { 0 } ) ) , NN0 , < ) ) |
13 |
8 10 12
|
3eqtr4d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> ( deg ` F ) = ( deg ` G ) ) |
14 |
13
|
oveq2d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> ( 0 ... ( deg ` F ) ) = ( 0 ... ( deg ` G ) ) ) |
15 |
|
simpl3 |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) /\ k e. ( 0 ... ( deg ` F ) ) ) -> A = B ) |
16 |
15
|
fveq1d |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( A ` k ) = ( B ` k ) ) |
17 |
16
|
oveq1d |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( ( A ` k ) x. ( z ^ k ) ) = ( ( B ` k ) x. ( z ^ k ) ) ) |
18 |
14 17
|
sumeq12dv |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( A ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( deg ` G ) ) ( ( B ` k ) x. ( z ^ k ) ) ) |
19 |
18
|
mpteq2dv |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( A ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` G ) ) ( ( B ` k ) x. ( z ^ k ) ) ) ) |
20 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
21 |
1 20
|
coeid |
|- ( F e. ( Poly ` S ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
22 |
21
|
3ad2ant1 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
23 |
|
eqid |
|- ( deg ` G ) = ( deg ` G ) |
24 |
2 23
|
coeid |
|- ( G e. ( Poly ` S ) -> G = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` G ) ) ( ( B ` k ) x. ( z ^ k ) ) ) ) |
25 |
24
|
3ad2ant2 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> G = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` G ) ) ( ( B ` k ) x. ( z ^ k ) ) ) ) |
26 |
19 22 25
|
3eqtr4d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ A = B ) -> F = G ) |
27 |
26
|
3expia |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( A = B -> F = G ) ) |
28 |
4 27
|
impbid2 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( F = G <-> A = B ) ) |