Step |
Hyp |
Ref |
Expression |
1 |
|
coe1add.y |
|- Y = ( Poly1 ` R ) |
2 |
|
coe1add.b |
|- B = ( Base ` Y ) |
3 |
|
coe1add.p |
|- .+b = ( +g ` Y ) |
4 |
|
coe1add.q |
|- .+ = ( +g ` R ) |
5 |
1 2 3 4
|
coe1add |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .+b G ) ) = ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ) |
6 |
5
|
adantr |
|- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( coe1 ` ( F .+b G ) ) = ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ) |
7 |
6
|
fveq1d |
|- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .+b G ) ) ` X ) = ( ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ` X ) ) |
8 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
10 |
8 2 1 9
|
coe1f |
|- ( F e. B -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) |
11 |
10
|
ffnd |
|- ( F e. B -> ( coe1 ` F ) Fn NN0 ) |
12 |
11
|
3ad2ant2 |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` F ) Fn NN0 ) |
13 |
12
|
adantr |
|- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( coe1 ` F ) Fn NN0 ) |
14 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
15 |
14 2 1 9
|
coe1f |
|- ( G e. B -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) |
16 |
15
|
ffnd |
|- ( G e. B -> ( coe1 ` G ) Fn NN0 ) |
17 |
16
|
3ad2ant3 |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` G ) Fn NN0 ) |
18 |
17
|
adantr |
|- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( coe1 ` G ) Fn NN0 ) |
19 |
|
nn0ex |
|- NN0 e. _V |
20 |
19
|
a1i |
|- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> NN0 e. _V ) |
21 |
|
simpr |
|- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> X e. NN0 ) |
22 |
|
fnfvof |
|- ( ( ( ( coe1 ` F ) Fn NN0 /\ ( coe1 ` G ) Fn NN0 ) /\ ( NN0 e. _V /\ X e. NN0 ) ) -> ( ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) .+ ( ( coe1 ` G ) ` X ) ) ) |
23 |
13 18 20 21 22
|
syl22anc |
|- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) .+ ( ( coe1 ` G ) ` X ) ) ) |
24 |
7 23
|
eqtrd |
|- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .+b G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) .+ ( ( coe1 ` G ) ` X ) ) ) |