| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1add.y |  |-  Y = ( Poly1 ` R ) | 
						
							| 2 |  | coe1add.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | coe1add.p |  |-  .+b = ( +g ` Y ) | 
						
							| 4 |  | coe1add.q |  |-  .+ = ( +g ` R ) | 
						
							| 5 | 1 2 3 4 | coe1add |  |-  ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .+b G ) ) = ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( coe1 ` ( F .+b G ) ) = ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ) | 
						
							| 7 | 6 | fveq1d |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .+b G ) ) ` X ) = ( ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ` X ) ) | 
						
							| 8 |  | eqid |  |-  ( coe1 ` F ) = ( coe1 ` F ) | 
						
							| 9 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 10 | 8 2 1 9 | coe1f |  |-  ( F e. B -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) | 
						
							| 11 | 10 | ffnd |  |-  ( F e. B -> ( coe1 ` F ) Fn NN0 ) | 
						
							| 12 | 11 | 3ad2ant2 |  |-  ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` F ) Fn NN0 ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( coe1 ` F ) Fn NN0 ) | 
						
							| 14 |  | eqid |  |-  ( coe1 ` G ) = ( coe1 ` G ) | 
						
							| 15 | 14 2 1 9 | coe1f |  |-  ( G e. B -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) | 
						
							| 16 | 15 | ffnd |  |-  ( G e. B -> ( coe1 ` G ) Fn NN0 ) | 
						
							| 17 | 16 | 3ad2ant3 |  |-  ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` G ) Fn NN0 ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( coe1 ` G ) Fn NN0 ) | 
						
							| 19 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 20 | 19 | a1i |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> NN0 e. _V ) | 
						
							| 21 |  | simpr |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> X e. NN0 ) | 
						
							| 22 |  | fnfvof |  |-  ( ( ( ( coe1 ` F ) Fn NN0 /\ ( coe1 ` G ) Fn NN0 ) /\ ( NN0 e. _V /\ X e. NN0 ) ) -> ( ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) .+ ( ( coe1 ` G ) ` X ) ) ) | 
						
							| 23 | 13 18 20 21 22 | syl22anc |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) .+ ( ( coe1 ` G ) ` X ) ) ) | 
						
							| 24 | 7 23 | eqtrd |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .+b G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) .+ ( ( coe1 ` G ) ` X ) ) ) |