Metamath Proof Explorer


Theorem coe1f

Description: Functionality of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses coe1fval.a
|- A = ( coe1 ` F )
coe1f.b
|- B = ( Base ` P )
coe1f.p
|- P = ( Poly1 ` R )
coe1f.k
|- K = ( Base ` R )
Assertion coe1f
|- ( F e. B -> A : NN0 --> K )

Proof

Step Hyp Ref Expression
1 coe1fval.a
 |-  A = ( coe1 ` F )
2 coe1f.b
 |-  B = ( Base ` P )
3 coe1f.p
 |-  P = ( Poly1 ` R )
4 coe1f.k
 |-  K = ( Base ` R )
5 3 2 ply1bascl
 |-  ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) )
6 eqid
 |-  ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) )
7 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
8 1 6 7 4 coe1f2
 |-  ( F e. ( Base ` ( PwSer1 ` R ) ) -> A : NN0 --> K )
9 5 8 syl
 |-  ( F e. B -> A : NN0 --> K )