Description: Functionality of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | coe1fval.a | |- A = ( coe1 ` F ) |
|
coe1f.b | |- B = ( Base ` P ) |
||
coe1f.p | |- P = ( Poly1 ` R ) |
||
coe1f.k | |- K = ( Base ` R ) |
||
Assertion | coe1f | |- ( F e. B -> A : NN0 --> K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1fval.a | |- A = ( coe1 ` F ) |
|
2 | coe1f.b | |- B = ( Base ` P ) |
|
3 | coe1f.p | |- P = ( Poly1 ` R ) |
|
4 | coe1f.k | |- K = ( Base ` R ) |
|
5 | 3 2 | ply1bascl | |- ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) ) |
6 | eqid | |- ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) |
|
7 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
8 | 1 6 7 4 | coe1f2 | |- ( F e. ( Base ` ( PwSer1 ` R ) ) -> A : NN0 --> K ) |
9 | 5 8 | syl | |- ( F e. B -> A : NN0 --> K ) |