| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1fval.a |  |-  A = ( coe1 ` F ) | 
						
							| 2 |  | coe1f2.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | coe1f2.p |  |-  P = ( PwSer1 ` R ) | 
						
							| 4 |  | coe1f2.k |  |-  K = ( Base ` R ) | 
						
							| 5 | 3 2 4 | psr1basf |  |-  ( F e. B -> F : ( NN0 ^m 1o ) --> K ) | 
						
							| 6 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 7 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 8 |  | 0ex |  |-  (/) e. _V | 
						
							| 9 |  | eqid |  |-  ( x e. NN0 |-> ( 1o X. { x } ) ) = ( x e. NN0 |-> ( 1o X. { x } ) ) | 
						
							| 10 | 6 7 8 9 | mapsnf1o3 |  |-  ( x e. NN0 |-> ( 1o X. { x } ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) | 
						
							| 11 |  | f1of |  |-  ( ( x e. NN0 |-> ( 1o X. { x } ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) -> ( x e. NN0 |-> ( 1o X. { x } ) ) : NN0 --> ( NN0 ^m 1o ) ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ( x e. NN0 |-> ( 1o X. { x } ) ) : NN0 --> ( NN0 ^m 1o ) | 
						
							| 13 |  | fco |  |-  ( ( F : ( NN0 ^m 1o ) --> K /\ ( x e. NN0 |-> ( 1o X. { x } ) ) : NN0 --> ( NN0 ^m 1o ) ) -> ( F o. ( x e. NN0 |-> ( 1o X. { x } ) ) ) : NN0 --> K ) | 
						
							| 14 | 5 12 13 | sylancl |  |-  ( F e. B -> ( F o. ( x e. NN0 |-> ( 1o X. { x } ) ) ) : NN0 --> K ) | 
						
							| 15 | 1 2 3 9 | coe1fval3 |  |-  ( F e. B -> A = ( F o. ( x e. NN0 |-> ( 1o X. { x } ) ) ) ) | 
						
							| 16 | 15 | feq1d |  |-  ( F e. B -> ( A : NN0 --> K <-> ( F o. ( x e. NN0 |-> ( 1o X. { x } ) ) ) : NN0 --> K ) ) | 
						
							| 17 | 14 16 | mpbird |  |-  ( F e. B -> A : NN0 --> K ) |