| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1sfi.a |  |-  A = ( coe1 ` F ) | 
						
							| 2 |  | coe1sfi.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | coe1sfi.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | coe1sfi.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | coe1fvalcl.k |  |-  K = ( Base ` R ) | 
						
							| 6 |  | breq1 |  |-  ( g = A -> ( g finSupp .0. <-> A finSupp .0. ) ) | 
						
							| 7 | 1 2 3 5 | coe1f |  |-  ( F e. B -> A : NN0 --> K ) | 
						
							| 8 | 5 | fvexi |  |-  K e. _V | 
						
							| 9 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 10 | 8 9 | pm3.2i |  |-  ( K e. _V /\ NN0 e. _V ) | 
						
							| 11 |  | elmapg |  |-  ( ( K e. _V /\ NN0 e. _V ) -> ( A e. ( K ^m NN0 ) <-> A : NN0 --> K ) ) | 
						
							| 12 | 10 11 | mp1i |  |-  ( F e. B -> ( A e. ( K ^m NN0 ) <-> A : NN0 --> K ) ) | 
						
							| 13 | 7 12 | mpbird |  |-  ( F e. B -> A e. ( K ^m NN0 ) ) | 
						
							| 14 | 1 2 3 4 | coe1sfi |  |-  ( F e. B -> A finSupp .0. ) | 
						
							| 15 | 6 13 14 | elrabd |  |-  ( F e. B -> A e. { g e. ( K ^m NN0 ) | g finSupp .0. } ) |