| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1fval.a |  |-  A = ( coe1 ` F ) | 
						
							| 2 | 1 | coe1fval |  |-  ( F e. V -> A = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) | 
						
							| 3 | 2 | fveq1d |  |-  ( F e. V -> ( A ` N ) = ( ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ` N ) ) | 
						
							| 4 |  | sneq |  |-  ( n = N -> { n } = { N } ) | 
						
							| 5 | 4 | xpeq2d |  |-  ( n = N -> ( 1o X. { n } ) = ( 1o X. { N } ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( n = N -> ( F ` ( 1o X. { n } ) ) = ( F ` ( 1o X. { N } ) ) ) | 
						
							| 7 |  | eqid |  |-  ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) | 
						
							| 8 |  | fvex |  |-  ( F ` ( 1o X. { N } ) ) e. _V | 
						
							| 9 | 6 7 8 | fvmpt |  |-  ( N e. NN0 -> ( ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ` N ) = ( F ` ( 1o X. { N } ) ) ) | 
						
							| 10 | 3 9 | sylan9eq |  |-  ( ( F e. V /\ N e. NN0 ) -> ( A ` N ) = ( F ` ( 1o X. { N } ) ) ) |