| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1fval.a |  |-  A = ( coe1 ` F ) | 
						
							| 2 |  | elex |  |-  ( F e. V -> F e. _V ) | 
						
							| 3 |  | fveq1 |  |-  ( f = F -> ( f ` ( 1o X. { n } ) ) = ( F ` ( 1o X. { n } ) ) ) | 
						
							| 4 | 3 | mpteq2dv |  |-  ( f = F -> ( n e. NN0 |-> ( f ` ( 1o X. { n } ) ) ) = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) | 
						
							| 5 |  | df-coe1 |  |-  coe1 = ( f e. _V |-> ( n e. NN0 |-> ( f ` ( 1o X. { n } ) ) ) ) | 
						
							| 6 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 7 | 6 | mptex |  |-  ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) e. _V | 
						
							| 8 | 4 5 7 | fvmpt |  |-  ( F e. _V -> ( coe1 ` F ) = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) | 
						
							| 9 | 1 8 | eqtrid |  |-  ( F e. _V -> A = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) | 
						
							| 10 | 2 9 | syl |  |-  ( F e. V -> A = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) |