Step |
Hyp |
Ref |
Expression |
1 |
|
coe1fval.a |
|- A = ( coe1 ` F ) |
2 |
|
elex |
|- ( F e. V -> F e. _V ) |
3 |
|
fveq1 |
|- ( f = F -> ( f ` ( 1o X. { n } ) ) = ( F ` ( 1o X. { n } ) ) ) |
4 |
3
|
mpteq2dv |
|- ( f = F -> ( n e. NN0 |-> ( f ` ( 1o X. { n } ) ) ) = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) |
5 |
|
df-coe1 |
|- coe1 = ( f e. _V |-> ( n e. NN0 |-> ( f ` ( 1o X. { n } ) ) ) ) |
6 |
|
nn0ex |
|- NN0 e. _V |
7 |
6
|
mptex |
|- ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) e. _V |
8 |
4 5 7
|
fvmpt |
|- ( F e. _V -> ( coe1 ` F ) = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) |
9 |
1 8
|
eqtrid |
|- ( F e. _V -> A = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) |
10 |
2 9
|
syl |
|- ( F e. V -> A = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) |