| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1fval.a |  |-  A = ( coe1 ` F ) | 
						
							| 2 |  | coe1f2.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | coe1f2.p |  |-  P = ( PwSer1 ` R ) | 
						
							| 4 |  | coe1fval3.g |  |-  G = ( y e. NN0 |-> ( 1o X. { y } ) ) | 
						
							| 5 | 1 | coe1fval |  |-  ( F e. B -> A = ( y e. NN0 |-> ( F ` ( 1o X. { y } ) ) ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 7 | 3 2 6 | psr1basf |  |-  ( F e. B -> F : ( NN0 ^m 1o ) --> ( Base ` R ) ) | 
						
							| 8 |  | ssv |  |-  ( Base ` R ) C_ _V | 
						
							| 9 |  | fss |  |-  ( ( F : ( NN0 ^m 1o ) --> ( Base ` R ) /\ ( Base ` R ) C_ _V ) -> F : ( NN0 ^m 1o ) --> _V ) | 
						
							| 10 | 7 8 9 | sylancl |  |-  ( F e. B -> F : ( NN0 ^m 1o ) --> _V ) | 
						
							| 11 |  | fconst6g |  |-  ( y e. NN0 -> ( 1o X. { y } ) : 1o --> NN0 ) | 
						
							| 12 | 11 | adantl |  |-  ( ( F : ( NN0 ^m 1o ) --> _V /\ y e. NN0 ) -> ( 1o X. { y } ) : 1o --> NN0 ) | 
						
							| 13 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 14 |  | 1oex |  |-  1o e. _V | 
						
							| 15 | 13 14 | elmap |  |-  ( ( 1o X. { y } ) e. ( NN0 ^m 1o ) <-> ( 1o X. { y } ) : 1o --> NN0 ) | 
						
							| 16 | 12 15 | sylibr |  |-  ( ( F : ( NN0 ^m 1o ) --> _V /\ y e. NN0 ) -> ( 1o X. { y } ) e. ( NN0 ^m 1o ) ) | 
						
							| 17 | 4 | a1i |  |-  ( F : ( NN0 ^m 1o ) --> _V -> G = ( y e. NN0 |-> ( 1o X. { y } ) ) ) | 
						
							| 18 |  | id |  |-  ( F : ( NN0 ^m 1o ) --> _V -> F : ( NN0 ^m 1o ) --> _V ) | 
						
							| 19 | 18 | feqmptd |  |-  ( F : ( NN0 ^m 1o ) --> _V -> F = ( x e. ( NN0 ^m 1o ) |-> ( F ` x ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( x = ( 1o X. { y } ) -> ( F ` x ) = ( F ` ( 1o X. { y } ) ) ) | 
						
							| 21 | 16 17 19 20 | fmptco |  |-  ( F : ( NN0 ^m 1o ) --> _V -> ( F o. G ) = ( y e. NN0 |-> ( F ` ( 1o X. { y } ) ) ) ) | 
						
							| 22 | 10 21 | syl |  |-  ( F e. B -> ( F o. G ) = ( y e. NN0 |-> ( F ` ( 1o X. { y } ) ) ) ) | 
						
							| 23 | 5 22 | eqtr4d |  |-  ( F e. B -> A = ( F o. G ) ) |