Description: A coefficient of a univariate polynomial over a class/ring is an element of this class/ring. (Contributed by AV, 9-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1fval.a | |- A = ( coe1 ` F ) | |
| coe1f.b | |- B = ( Base ` P ) | ||
| coe1f.p | |- P = ( Poly1 ` R ) | ||
| coe1f.k | |- K = ( Base ` R ) | ||
| Assertion | coe1fvalcl | |- ( ( F e. B /\ N e. NN0 ) -> ( A ` N ) e. K ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | coe1fval.a | |- A = ( coe1 ` F ) | |
| 2 | coe1f.b | |- B = ( Base ` P ) | |
| 3 | coe1f.p | |- P = ( Poly1 ` R ) | |
| 4 | coe1f.k | |- K = ( Base ` R ) | |
| 5 | 1 2 3 4 | coe1f | |- ( F e. B -> A : NN0 --> K ) | 
| 6 | 5 | ffvelcdmda | |- ( ( F e. B /\ N e. NN0 ) -> ( A ` N ) e. K ) |