| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1mul.s |  |-  Y = ( Poly1 ` R ) | 
						
							| 2 |  | coe1mul.t |  |-  .xb = ( .r ` Y ) | 
						
							| 3 |  | coe1mul.u |  |-  .x. = ( .r ` R ) | 
						
							| 4 |  | coe1mul.b |  |-  B = ( Base ` Y ) | 
						
							| 5 |  | id |  |-  ( R e. Ring -> R e. Ring ) | 
						
							| 6 | 1 4 | ply1bascl |  |-  ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) ) | 
						
							| 7 | 1 4 | ply1bascl |  |-  ( G e. B -> G e. ( Base ` ( PwSer1 ` R ) ) ) | 
						
							| 8 |  | eqid |  |-  ( PwSer1 ` R ) = ( PwSer1 ` R ) | 
						
							| 9 |  | eqid |  |-  ( 1o mPoly R ) = ( 1o mPoly R ) | 
						
							| 10 |  | eqid |  |-  ( 1o mPwSer R ) = ( 1o mPwSer R ) | 
						
							| 11 | 1 9 2 | ply1mulr |  |-  .xb = ( .r ` ( 1o mPoly R ) ) | 
						
							| 12 | 9 10 11 | mplmulr |  |-  .xb = ( .r ` ( 1o mPwSer R ) ) | 
						
							| 13 |  | eqid |  |-  ( .r ` ( PwSer1 ` R ) ) = ( .r ` ( PwSer1 ` R ) ) | 
						
							| 14 | 8 10 13 | psr1mulr |  |-  ( .r ` ( PwSer1 ` R ) ) = ( .r ` ( 1o mPwSer R ) ) | 
						
							| 15 | 12 14 | eqtr4i |  |-  .xb = ( .r ` ( PwSer1 ` R ) ) | 
						
							| 16 |  | eqid |  |-  ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) | 
						
							| 17 | 8 15 3 16 | coe1mul2 |  |-  ( ( R e. Ring /\ F e. ( Base ` ( PwSer1 ` R ) ) /\ G e. ( Base ` ( PwSer1 ` R ) ) ) -> ( coe1 ` ( F .xb G ) ) = ( k e. NN0 |-> ( R gsum ( x e. ( 0 ... k ) |-> ( ( ( coe1 ` F ) ` x ) .x. ( ( coe1 ` G ) ` ( k - x ) ) ) ) ) ) ) | 
						
							| 18 | 5 6 7 17 | syl3an |  |-  ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .xb G ) ) = ( k e. NN0 |-> ( R gsum ( x e. ( 0 ... k ) |-> ( ( ( coe1 ` F ) ` x ) .x. ( ( coe1 ` G ) ` ( k - x ) ) ) ) ) ) ) |