| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1pwmul.z |  |-  .0. = ( 0g ` R ) | 
						
							| 2 |  | coe1pwmul.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | coe1pwmul.x |  |-  X = ( var1 ` R ) | 
						
							| 4 |  | coe1pwmul.n |  |-  N = ( mulGrp ` P ) | 
						
							| 5 |  | coe1pwmul.e |  |-  .^ = ( .g ` N ) | 
						
							| 6 |  | coe1pwmul.b |  |-  B = ( Base ` P ) | 
						
							| 7 |  | coe1pwmul.t |  |-  .x. = ( .r ` P ) | 
						
							| 8 |  | coe1pwmul.r |  |-  ( ph -> R e. Ring ) | 
						
							| 9 |  | coe1pwmul.a |  |-  ( ph -> A e. B ) | 
						
							| 10 |  | coe1pwmul.d |  |-  ( ph -> D e. NN0 ) | 
						
							| 11 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 12 |  | eqid |  |-  ( .s ` P ) = ( .s ` P ) | 
						
							| 13 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 14 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 15 | 11 14 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 16 | 8 15 | syl |  |-  ( ph -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 17 | 1 11 2 3 12 4 5 6 7 13 9 8 16 10 | coe1tmmul |  |-  ( ph -> ( coe1 ` ( ( ( 1r ` R ) ( .s ` P ) ( D .^ X ) ) .x. A ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( 1r ` R ) ( .r ` R ) ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) ) ) | 
						
							| 18 | 2 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` P ) ) | 
						
							| 19 | 8 18 | syl |  |-  ( ph -> R = ( Scalar ` P ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ph -> ( ( 1r ` R ) ( .s ` P ) ( D .^ X ) ) = ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( D .^ X ) ) ) | 
						
							| 22 | 2 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 23 | 8 22 | syl |  |-  ( ph -> P e. LMod ) | 
						
							| 24 | 4 6 | mgpbas |  |-  B = ( Base ` N ) | 
						
							| 25 | 2 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 26 | 4 | ringmgp |  |-  ( P e. Ring -> N e. Mnd ) | 
						
							| 27 | 8 25 26 | 3syl |  |-  ( ph -> N e. Mnd ) | 
						
							| 28 | 3 2 6 | vr1cl |  |-  ( R e. Ring -> X e. B ) | 
						
							| 29 | 8 28 | syl |  |-  ( ph -> X e. B ) | 
						
							| 30 | 24 5 27 10 29 | mulgnn0cld |  |-  ( ph -> ( D .^ X ) e. B ) | 
						
							| 31 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 32 |  | eqid |  |-  ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) | 
						
							| 33 | 6 31 12 32 | lmodvs1 |  |-  ( ( P e. LMod /\ ( D .^ X ) e. B ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( D .^ X ) ) = ( D .^ X ) ) | 
						
							| 34 | 23 30 33 | syl2anc |  |-  ( ph -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( D .^ X ) ) = ( D .^ X ) ) | 
						
							| 35 | 21 34 | eqtrd |  |-  ( ph -> ( ( 1r ` R ) ( .s ` P ) ( D .^ X ) ) = ( D .^ X ) ) | 
						
							| 36 | 35 | fvoveq1d |  |-  ( ph -> ( coe1 ` ( ( ( 1r ` R ) ( .s ` P ) ( D .^ X ) ) .x. A ) ) = ( coe1 ` ( ( D .^ X ) .x. A ) ) ) | 
						
							| 37 | 8 | ad2antrr |  |-  ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> R e. Ring ) | 
						
							| 38 |  | eqid |  |-  ( coe1 ` A ) = ( coe1 ` A ) | 
						
							| 39 | 38 6 2 11 | coe1f |  |-  ( A e. B -> ( coe1 ` A ) : NN0 --> ( Base ` R ) ) | 
						
							| 40 | 9 39 | syl |  |-  ( ph -> ( coe1 ` A ) : NN0 --> ( Base ` R ) ) | 
						
							| 41 | 40 | ad2antrr |  |-  ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( coe1 ` A ) : NN0 --> ( Base ` R ) ) | 
						
							| 42 | 10 | ad2antrr |  |-  ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> D e. NN0 ) | 
						
							| 43 |  | simplr |  |-  ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> x e. NN0 ) | 
						
							| 44 |  | simpr |  |-  ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> D <_ x ) | 
						
							| 45 |  | nn0sub2 |  |-  ( ( D e. NN0 /\ x e. NN0 /\ D <_ x ) -> ( x - D ) e. NN0 ) | 
						
							| 46 | 42 43 44 45 | syl3anc |  |-  ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( x - D ) e. NN0 ) | 
						
							| 47 | 41 46 | ffvelcdmd |  |-  ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( ( coe1 ` A ) ` ( x - D ) ) e. ( Base ` R ) ) | 
						
							| 48 | 11 13 14 | ringlidm |  |-  ( ( R e. Ring /\ ( ( coe1 ` A ) ` ( x - D ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( ( coe1 ` A ) ` ( x - D ) ) ) = ( ( coe1 ` A ) ` ( x - D ) ) ) | 
						
							| 49 | 37 47 48 | syl2anc |  |-  ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( ( 1r ` R ) ( .r ` R ) ( ( coe1 ` A ) ` ( x - D ) ) ) = ( ( coe1 ` A ) ` ( x - D ) ) ) | 
						
							| 50 | 49 | ifeq1da |  |-  ( ( ph /\ x e. NN0 ) -> if ( D <_ x , ( ( 1r ` R ) ( .r ` R ) ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) = if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) | 
						
							| 51 | 50 | mpteq2dva |  |-  ( ph -> ( x e. NN0 |-> if ( D <_ x , ( ( 1r ` R ) ( .r ` R ) ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ) | 
						
							| 52 | 17 36 51 | 3eqtr3d |  |-  ( ph -> ( coe1 ` ( ( D .^ X ) .x. A ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ) |