Step |
Hyp |
Ref |
Expression |
1 |
|
coe1pwmul.z |
|- .0. = ( 0g ` R ) |
2 |
|
coe1pwmul.p |
|- P = ( Poly1 ` R ) |
3 |
|
coe1pwmul.x |
|- X = ( var1 ` R ) |
4 |
|
coe1pwmul.n |
|- N = ( mulGrp ` P ) |
5 |
|
coe1pwmul.e |
|- .^ = ( .g ` N ) |
6 |
|
coe1pwmul.b |
|- B = ( Base ` P ) |
7 |
|
coe1pwmul.t |
|- .x. = ( .r ` P ) |
8 |
|
coe1pwmul.r |
|- ( ph -> R e. Ring ) |
9 |
|
coe1pwmul.a |
|- ( ph -> A e. B ) |
10 |
|
coe1pwmul.d |
|- ( ph -> D e. NN0 ) |
11 |
|
coe1pwmulfv.y |
|- ( ph -> Y e. NN0 ) |
12 |
1 2 3 4 5 6 7 8 9 10
|
coe1pwmul |
|- ( ph -> ( coe1 ` ( ( D .^ X ) .x. A ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ) |
13 |
12
|
fveq1d |
|- ( ph -> ( ( coe1 ` ( ( D .^ X ) .x. A ) ) ` ( D + Y ) ) = ( ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ` ( D + Y ) ) ) |
14 |
10 11
|
nn0addcld |
|- ( ph -> ( D + Y ) e. NN0 ) |
15 |
|
breq2 |
|- ( x = ( D + Y ) -> ( D <_ x <-> D <_ ( D + Y ) ) ) |
16 |
|
fvoveq1 |
|- ( x = ( D + Y ) -> ( ( coe1 ` A ) ` ( x - D ) ) = ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) ) |
17 |
15 16
|
ifbieq1d |
|- ( x = ( D + Y ) -> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) = if ( D <_ ( D + Y ) , ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) , .0. ) ) |
18 |
|
eqid |
|- ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) |
19 |
|
fvex |
|- ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) e. _V |
20 |
1
|
fvexi |
|- .0. e. _V |
21 |
19 20
|
ifex |
|- if ( D <_ ( D + Y ) , ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) , .0. ) e. _V |
22 |
17 18 21
|
fvmpt |
|- ( ( D + Y ) e. NN0 -> ( ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ` ( D + Y ) ) = if ( D <_ ( D + Y ) , ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) , .0. ) ) |
23 |
14 22
|
syl |
|- ( ph -> ( ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ` ( D + Y ) ) = if ( D <_ ( D + Y ) , ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) , .0. ) ) |
24 |
10
|
nn0red |
|- ( ph -> D e. RR ) |
25 |
|
nn0addge1 |
|- ( ( D e. RR /\ Y e. NN0 ) -> D <_ ( D + Y ) ) |
26 |
24 11 25
|
syl2anc |
|- ( ph -> D <_ ( D + Y ) ) |
27 |
26
|
iftrued |
|- ( ph -> if ( D <_ ( D + Y ) , ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) , .0. ) = ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) ) |
28 |
10
|
nn0cnd |
|- ( ph -> D e. CC ) |
29 |
11
|
nn0cnd |
|- ( ph -> Y e. CC ) |
30 |
28 29
|
pncan2d |
|- ( ph -> ( ( D + Y ) - D ) = Y ) |
31 |
30
|
fveq2d |
|- ( ph -> ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) = ( ( coe1 ` A ) ` Y ) ) |
32 |
23 27 31
|
3eqtrd |
|- ( ph -> ( ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ` ( D + Y ) ) = ( ( coe1 ` A ) ` Y ) ) |
33 |
13 32
|
eqtrd |
|- ( ph -> ( ( coe1 ` ( ( D .^ X ) .x. A ) ) ` ( D + Y ) ) = ( ( coe1 ` A ) ` Y ) ) |