Metamath Proof Explorer


Theorem coe1pwmulfv

Description: Function value of a right-multiplication by a variable power in the shifted domain. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses coe1pwmul.z
|- .0. = ( 0g ` R )
coe1pwmul.p
|- P = ( Poly1 ` R )
coe1pwmul.x
|- X = ( var1 ` R )
coe1pwmul.n
|- N = ( mulGrp ` P )
coe1pwmul.e
|- .^ = ( .g ` N )
coe1pwmul.b
|- B = ( Base ` P )
coe1pwmul.t
|- .x. = ( .r ` P )
coe1pwmul.r
|- ( ph -> R e. Ring )
coe1pwmul.a
|- ( ph -> A e. B )
coe1pwmul.d
|- ( ph -> D e. NN0 )
coe1pwmulfv.y
|- ( ph -> Y e. NN0 )
Assertion coe1pwmulfv
|- ( ph -> ( ( coe1 ` ( ( D .^ X ) .x. A ) ) ` ( D + Y ) ) = ( ( coe1 ` A ) ` Y ) )

Proof

Step Hyp Ref Expression
1 coe1pwmul.z
 |-  .0. = ( 0g ` R )
2 coe1pwmul.p
 |-  P = ( Poly1 ` R )
3 coe1pwmul.x
 |-  X = ( var1 ` R )
4 coe1pwmul.n
 |-  N = ( mulGrp ` P )
5 coe1pwmul.e
 |-  .^ = ( .g ` N )
6 coe1pwmul.b
 |-  B = ( Base ` P )
7 coe1pwmul.t
 |-  .x. = ( .r ` P )
8 coe1pwmul.r
 |-  ( ph -> R e. Ring )
9 coe1pwmul.a
 |-  ( ph -> A e. B )
10 coe1pwmul.d
 |-  ( ph -> D e. NN0 )
11 coe1pwmulfv.y
 |-  ( ph -> Y e. NN0 )
12 1 2 3 4 5 6 7 8 9 10 coe1pwmul
 |-  ( ph -> ( coe1 ` ( ( D .^ X ) .x. A ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) )
13 12 fveq1d
 |-  ( ph -> ( ( coe1 ` ( ( D .^ X ) .x. A ) ) ` ( D + Y ) ) = ( ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ` ( D + Y ) ) )
14 10 11 nn0addcld
 |-  ( ph -> ( D + Y ) e. NN0 )
15 breq2
 |-  ( x = ( D + Y ) -> ( D <_ x <-> D <_ ( D + Y ) ) )
16 fvoveq1
 |-  ( x = ( D + Y ) -> ( ( coe1 ` A ) ` ( x - D ) ) = ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) )
17 15 16 ifbieq1d
 |-  ( x = ( D + Y ) -> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) = if ( D <_ ( D + Y ) , ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) , .0. ) )
18 eqid
 |-  ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) )
19 fvex
 |-  ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) e. _V
20 1 fvexi
 |-  .0. e. _V
21 19 20 ifex
 |-  if ( D <_ ( D + Y ) , ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) , .0. ) e. _V
22 17 18 21 fvmpt
 |-  ( ( D + Y ) e. NN0 -> ( ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ` ( D + Y ) ) = if ( D <_ ( D + Y ) , ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) , .0. ) )
23 14 22 syl
 |-  ( ph -> ( ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ` ( D + Y ) ) = if ( D <_ ( D + Y ) , ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) , .0. ) )
24 10 nn0red
 |-  ( ph -> D e. RR )
25 nn0addge1
 |-  ( ( D e. RR /\ Y e. NN0 ) -> D <_ ( D + Y ) )
26 24 11 25 syl2anc
 |-  ( ph -> D <_ ( D + Y ) )
27 26 iftrued
 |-  ( ph -> if ( D <_ ( D + Y ) , ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) , .0. ) = ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) )
28 10 nn0cnd
 |-  ( ph -> D e. CC )
29 11 nn0cnd
 |-  ( ph -> Y e. CC )
30 28 29 pncan2d
 |-  ( ph -> ( ( D + Y ) - D ) = Y )
31 30 fveq2d
 |-  ( ph -> ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) = ( ( coe1 ` A ) ` Y ) )
32 23 27 31 3eqtrd
 |-  ( ph -> ( ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ` ( D + Y ) ) = ( ( coe1 ` A ) ` Y ) )
33 13 32 eqtrd
 |-  ( ph -> ( ( coe1 ` ( ( D .^ X ) .x. A ) ) ` ( D + Y ) ) = ( ( coe1 ` A ) ` Y ) )