Step |
Hyp |
Ref |
Expression |
1 |
|
ply1scl.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1scl.a |
|- A = ( algSc ` P ) |
3 |
|
coe1scl.k |
|- K = ( Base ` R ) |
4 |
|
coe1scl.z |
|- .0. = ( 0g ` R ) |
5 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
6 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
7 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
8 |
|
eqid |
|- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
9 |
3 1 5 6 7 8 2
|
ply1scltm |
|- ( ( R e. Ring /\ X e. K ) -> ( A ` X ) = ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
10 |
9
|
fveq2d |
|- ( ( R e. Ring /\ X e. K ) -> ( coe1 ` ( A ` X ) ) = ( coe1 ` ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) |
11 |
|
0nn0 |
|- 0 e. NN0 |
12 |
4 3 1 5 6 7 8
|
coe1tm |
|- ( ( R e. Ring /\ X e. K /\ 0 e. NN0 ) -> ( coe1 ` ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = ( x e. NN0 |-> if ( x = 0 , X , .0. ) ) ) |
13 |
11 12
|
mp3an3 |
|- ( ( R e. Ring /\ X e. K ) -> ( coe1 ` ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = ( x e. NN0 |-> if ( x = 0 , X , .0. ) ) ) |
14 |
10 13
|
eqtrd |
|- ( ( R e. Ring /\ X e. K ) -> ( coe1 ` ( A ` X ) ) = ( x e. NN0 |-> if ( x = 0 , X , .0. ) ) ) |