| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1sclmul.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | coe1sclmul.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | coe1sclmul.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | coe1sclmul.a |  |-  A = ( algSc ` P ) | 
						
							| 5 |  | coe1sclmul.t |  |-  .xb = ( .r ` P ) | 
						
							| 6 |  | coe1sclmul.u |  |-  .x. = ( .r ` R ) | 
						
							| 7 | 1 2 3 4 5 6 | coe1sclmul |  |-  ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( coe1 ` ( ( A ` X ) .xb Y ) ) = ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ) | 
						
							| 8 | 7 | 3expb |  |-  ( ( R e. Ring /\ ( X e. K /\ Y e. B ) ) -> ( coe1 ` ( ( A ` X ) .xb Y ) ) = ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ) | 
						
							| 9 | 8 | 3adant3 |  |-  ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( coe1 ` ( ( A ` X ) .xb Y ) ) = ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ) | 
						
							| 10 | 9 | fveq1d |  |-  ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( ( coe1 ` ( ( A ` X ) .xb Y ) ) ` .0. ) = ( ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ` .0. ) ) | 
						
							| 11 |  | simp3 |  |-  ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> .0. e. NN0 ) | 
						
							| 12 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 13 | 12 | a1i |  |-  ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> NN0 e. _V ) | 
						
							| 14 |  | simp2l |  |-  ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> X e. K ) | 
						
							| 15 |  | simp2r |  |-  ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> Y e. B ) | 
						
							| 16 |  | eqid |  |-  ( coe1 ` Y ) = ( coe1 ` Y ) | 
						
							| 17 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 18 | 16 2 1 17 | coe1f |  |-  ( Y e. B -> ( coe1 ` Y ) : NN0 --> ( Base ` R ) ) | 
						
							| 19 |  | ffn |  |-  ( ( coe1 ` Y ) : NN0 --> ( Base ` R ) -> ( coe1 ` Y ) Fn NN0 ) | 
						
							| 20 | 15 18 19 | 3syl |  |-  ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( coe1 ` Y ) Fn NN0 ) | 
						
							| 21 |  | eqidd |  |-  ( ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) /\ .0. e. NN0 ) -> ( ( coe1 ` Y ) ` .0. ) = ( ( coe1 ` Y ) ` .0. ) ) | 
						
							| 22 | 13 14 20 21 | ofc1 |  |-  ( ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) /\ .0. e. NN0 ) -> ( ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ` .0. ) = ( X .x. ( ( coe1 ` Y ) ` .0. ) ) ) | 
						
							| 23 | 11 22 | mpdan |  |-  ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ` .0. ) = ( X .x. ( ( coe1 ` Y ) ` .0. ) ) ) | 
						
							| 24 | 10 23 | eqtrd |  |-  ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( ( coe1 ` ( ( A ` X ) .xb Y ) ) ` .0. ) = ( X .x. ( ( coe1 ` Y ) ` .0. ) ) ) |