Step |
Hyp |
Ref |
Expression |
1 |
|
coe1sfi.a |
|- A = ( coe1 ` F ) |
2 |
|
coe1sfi.b |
|- B = ( Base ` P ) |
3 |
|
coe1sfi.p |
|- P = ( Poly1 ` R ) |
4 |
|
coe1sfi.z |
|- .0. = ( 0g ` R ) |
5 |
|
df1o2 |
|- 1o = { (/) } |
6 |
|
nn0ex |
|- NN0 e. _V |
7 |
|
0ex |
|- (/) e. _V |
8 |
|
eqid |
|- ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) = ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) |
9 |
5 6 7 8
|
mapsncnv |
|- `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) = ( y e. NN0 |-> ( 1o X. { y } ) ) |
10 |
1 2 3 9
|
coe1fval2 |
|- ( F e. B -> A = ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) ) |
11 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
12 |
|
eqid |
|- ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) ) |
13 |
3 2
|
ply1bascl2 |
|- ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) |
14 |
3 2
|
elbasfv |
|- ( F e. B -> R e. _V ) |
15 |
11 12 4 13 14
|
mplelsfi |
|- ( F e. B -> F finSupp .0. ) |
16 |
5 6 7 8
|
mapsnf1o2 |
|- ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0 |
17 |
|
f1ocnv |
|- ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0 -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) ) |
18 |
|
f1of1 |
|- ( `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o ) ) |
19 |
16 17 18
|
mp2b |
|- `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o ) |
20 |
19
|
a1i |
|- ( F e. B -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o ) ) |
21 |
4
|
fvexi |
|- .0. e. _V |
22 |
21
|
a1i |
|- ( F e. B -> .0. e. _V ) |
23 |
|
id |
|- ( F e. B -> F e. B ) |
24 |
15 20 22 23
|
fsuppco |
|- ( F e. B -> ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) finSupp .0. ) |
25 |
10 24
|
eqbrtrd |
|- ( F e. B -> A finSupp .0. ) |