| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1sfi.a |  |-  A = ( coe1 ` F ) | 
						
							| 2 |  | coe1sfi.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | coe1sfi.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | coe1sfi.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 6 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 7 |  | 0ex |  |-  (/) e. _V | 
						
							| 8 |  | eqid |  |-  ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) = ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) | 
						
							| 9 | 5 6 7 8 | mapsncnv |  |-  `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) = ( y e. NN0 |-> ( 1o X. { y } ) ) | 
						
							| 10 | 1 2 3 9 | coe1fval2 |  |-  ( F e. B -> A = ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) ) | 
						
							| 11 |  | eqid |  |-  ( 1o mPoly R ) = ( 1o mPoly R ) | 
						
							| 12 |  | eqid |  |-  ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) ) | 
						
							| 13 | 3 2 | ply1bascl2 |  |-  ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) | 
						
							| 14 | 11 12 4 13 | mplelsfi |  |-  ( F e. B -> F finSupp .0. ) | 
						
							| 15 | 5 6 7 8 | mapsnf1o2 |  |-  ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0 | 
						
							| 16 |  | f1ocnv |  |-  ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0 -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) ) | 
						
							| 17 |  | f1of1 |  |-  ( `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o ) ) | 
						
							| 18 | 15 16 17 | mp2b |  |-  `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o ) | 
						
							| 19 | 18 | a1i |  |-  ( F e. B -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o ) ) | 
						
							| 20 | 4 | fvexi |  |-  .0. e. _V | 
						
							| 21 | 20 | a1i |  |-  ( F e. B -> .0. e. _V ) | 
						
							| 22 |  | id |  |-  ( F e. B -> F e. B ) | 
						
							| 23 | 14 19 21 22 | fsuppco |  |-  ( F e. B -> ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) finSupp .0. ) | 
						
							| 24 | 10 23 | eqbrtrd |  |-  ( F e. B -> A finSupp .0. ) |