| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1sub.y |  |-  Y = ( Poly1 ` R ) | 
						
							| 2 |  | coe1sub.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | coe1sub.p |  |-  .- = ( -g ` Y ) | 
						
							| 4 |  | coe1sub.q |  |-  N = ( -g ` R ) | 
						
							| 5 |  | simpl1 |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> R e. Ring ) | 
						
							| 6 | 1 | ply1ring |  |-  ( R e. Ring -> Y e. Ring ) | 
						
							| 7 |  | ringgrp |  |-  ( Y e. Ring -> Y e. Grp ) | 
						
							| 8 | 6 7 | syl |  |-  ( R e. Ring -> Y e. Grp ) | 
						
							| 9 | 2 3 | grpsubcl |  |-  ( ( Y e. Grp /\ F e. B /\ G e. B ) -> ( F .- G ) e. B ) | 
						
							| 10 | 8 9 | syl3an1 |  |-  ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( F .- G ) e. B ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( F .- G ) e. B ) | 
						
							| 12 |  | simpl3 |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> G e. B ) | 
						
							| 13 |  | simpr |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> X e. NN0 ) | 
						
							| 14 |  | eqid |  |-  ( +g ` Y ) = ( +g ` Y ) | 
						
							| 15 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 16 | 1 2 14 15 | coe1addfv |  |-  ( ( ( R e. Ring /\ ( F .- G ) e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( ( F .- G ) ( +g ` Y ) G ) ) ` X ) = ( ( ( coe1 ` ( F .- G ) ) ` X ) ( +g ` R ) ( ( coe1 ` G ) ` X ) ) ) | 
						
							| 17 | 5 11 12 13 16 | syl31anc |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( ( F .- G ) ( +g ` Y ) G ) ) ` X ) = ( ( ( coe1 ` ( F .- G ) ) ` X ) ( +g ` R ) ( ( coe1 ` G ) ` X ) ) ) | 
						
							| 18 | 8 | 3ad2ant1 |  |-  ( ( R e. Ring /\ F e. B /\ G e. B ) -> Y e. Grp ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> Y e. Grp ) | 
						
							| 20 |  | simpl2 |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> F e. B ) | 
						
							| 21 | 2 14 3 | grpnpcan |  |-  ( ( Y e. Grp /\ F e. B /\ G e. B ) -> ( ( F .- G ) ( +g ` Y ) G ) = F ) | 
						
							| 22 | 19 20 12 21 | syl3anc |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( F .- G ) ( +g ` Y ) G ) = F ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( coe1 ` ( ( F .- G ) ( +g ` Y ) G ) ) = ( coe1 ` F ) ) | 
						
							| 24 | 23 | fveq1d |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( ( F .- G ) ( +g ` Y ) G ) ) ` X ) = ( ( coe1 ` F ) ` X ) ) | 
						
							| 25 | 17 24 | eqtr3d |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( ( coe1 ` ( F .- G ) ) ` X ) ( +g ` R ) ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` F ) ` X ) ) | 
						
							| 26 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 27 | 26 | 3ad2ant1 |  |-  ( ( R e. Ring /\ F e. B /\ G e. B ) -> R e. Grp ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> R e. Grp ) | 
						
							| 29 |  | eqid |  |-  ( coe1 ` F ) = ( coe1 ` F ) | 
						
							| 30 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 31 | 29 2 1 30 | coe1f |  |-  ( F e. B -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) | 
						
							| 32 | 31 | 3ad2ant2 |  |-  ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) | 
						
							| 33 | 32 | ffvelcdmda |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` F ) ` X ) e. ( Base ` R ) ) | 
						
							| 34 |  | eqid |  |-  ( coe1 ` G ) = ( coe1 ` G ) | 
						
							| 35 | 34 2 1 30 | coe1f |  |-  ( G e. B -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) | 
						
							| 36 | 35 | 3ad2ant3 |  |-  ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) | 
						
							| 37 | 36 | ffvelcdmda |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` G ) ` X ) e. ( Base ` R ) ) | 
						
							| 38 |  | eqid |  |-  ( coe1 ` ( F .- G ) ) = ( coe1 ` ( F .- G ) ) | 
						
							| 39 | 38 2 1 30 | coe1f |  |-  ( ( F .- G ) e. B -> ( coe1 ` ( F .- G ) ) : NN0 --> ( Base ` R ) ) | 
						
							| 40 | 10 39 | syl |  |-  ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .- G ) ) : NN0 --> ( Base ` R ) ) | 
						
							| 41 | 40 | ffvelcdmda |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .- G ) ) ` X ) e. ( Base ` R ) ) | 
						
							| 42 | 30 15 4 | grpsubadd |  |-  ( ( R e. Grp /\ ( ( ( coe1 ` F ) ` X ) e. ( Base ` R ) /\ ( ( coe1 ` G ) ` X ) e. ( Base ` R ) /\ ( ( coe1 ` ( F .- G ) ) ` X ) e. ( Base ` R ) ) ) -> ( ( ( ( coe1 ` F ) ` X ) N ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` ( F .- G ) ) ` X ) <-> ( ( ( coe1 ` ( F .- G ) ) ` X ) ( +g ` R ) ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` F ) ` X ) ) ) | 
						
							| 43 | 28 33 37 41 42 | syl13anc |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( ( ( coe1 ` F ) ` X ) N ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` ( F .- G ) ) ` X ) <-> ( ( ( coe1 ` ( F .- G ) ) ` X ) ( +g ` R ) ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` F ) ` X ) ) ) | 
						
							| 44 | 25 43 | mpbird |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( ( coe1 ` F ) ` X ) N ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` ( F .- G ) ) ` X ) ) | 
						
							| 45 | 44 | eqcomd |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .- G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) N ( ( coe1 ` G ) ` X ) ) ) |