Step |
Hyp |
Ref |
Expression |
1 |
|
coe1term.1 |
|- F = ( z e. CC |-> ( A x. ( z ^ N ) ) ) |
2 |
1
|
coe1termlem |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( coeff ` F ) = ( n e. NN0 |-> if ( n = N , A , 0 ) ) /\ ( A =/= 0 -> ( deg ` F ) = N ) ) ) |
3 |
2
|
simpld |
|- ( ( A e. CC /\ N e. NN0 ) -> ( coeff ` F ) = ( n e. NN0 |-> if ( n = N , A , 0 ) ) ) |
4 |
3
|
fveq1d |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( coeff ` F ) ` M ) = ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` M ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> ( ( coeff ` F ) ` M ) = ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` M ) ) |
6 |
|
eqid |
|- ( n e. NN0 |-> if ( n = N , A , 0 ) ) = ( n e. NN0 |-> if ( n = N , A , 0 ) ) |
7 |
|
eqeq1 |
|- ( n = M -> ( n = N <-> M = N ) ) |
8 |
7
|
ifbid |
|- ( n = M -> if ( n = N , A , 0 ) = if ( M = N , A , 0 ) ) |
9 |
|
simp3 |
|- ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> M e. NN0 ) |
10 |
|
simp1 |
|- ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> A e. CC ) |
11 |
|
0cn |
|- 0 e. CC |
12 |
|
ifcl |
|- ( ( A e. CC /\ 0 e. CC ) -> if ( M = N , A , 0 ) e. CC ) |
13 |
10 11 12
|
sylancl |
|- ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> if ( M = N , A , 0 ) e. CC ) |
14 |
6 8 9 13
|
fvmptd3 |
|- ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` M ) = if ( M = N , A , 0 ) ) |
15 |
5 14
|
eqtrd |
|- ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> ( ( coeff ` F ) ` M ) = if ( M = N , A , 0 ) ) |