| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1term.1 |  |-  F = ( z e. CC |-> ( A x. ( z ^ N ) ) ) | 
						
							| 2 | 1 | coe1termlem |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( coeff ` F ) = ( n e. NN0 |-> if ( n = N , A , 0 ) ) /\ ( A =/= 0 -> ( deg ` F ) = N ) ) ) | 
						
							| 3 | 2 | simpld |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( coeff ` F ) = ( n e. NN0 |-> if ( n = N , A , 0 ) ) ) | 
						
							| 4 | 3 | fveq1d |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( coeff ` F ) ` M ) = ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` M ) ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> ( ( coeff ` F ) ` M ) = ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` M ) ) | 
						
							| 6 |  | eqid |  |-  ( n e. NN0 |-> if ( n = N , A , 0 ) ) = ( n e. NN0 |-> if ( n = N , A , 0 ) ) | 
						
							| 7 |  | eqeq1 |  |-  ( n = M -> ( n = N <-> M = N ) ) | 
						
							| 8 | 7 | ifbid |  |-  ( n = M -> if ( n = N , A , 0 ) = if ( M = N , A , 0 ) ) | 
						
							| 9 |  | simp3 |  |-  ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> M e. NN0 ) | 
						
							| 10 |  | simp1 |  |-  ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> A e. CC ) | 
						
							| 11 |  | 0cn |  |-  0 e. CC | 
						
							| 12 |  | ifcl |  |-  ( ( A e. CC /\ 0 e. CC ) -> if ( M = N , A , 0 ) e. CC ) | 
						
							| 13 | 10 11 12 | sylancl |  |-  ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> if ( M = N , A , 0 ) e. CC ) | 
						
							| 14 | 6 8 9 13 | fvmptd3 |  |-  ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` M ) = if ( M = N , A , 0 ) ) | 
						
							| 15 | 5 14 | eqtrd |  |-  ( ( A e. CC /\ N e. NN0 /\ M e. NN0 ) -> ( ( coeff ` F ) ` M ) = if ( M = N , A , 0 ) ) |