Step |
Hyp |
Ref |
Expression |
1 |
|
coe1term.1 |
|- F = ( z e. CC |-> ( A x. ( z ^ N ) ) ) |
2 |
|
ssid |
|- CC C_ CC |
3 |
1
|
ply1term |
|- ( ( CC C_ CC /\ A e. CC /\ N e. NN0 ) -> F e. ( Poly ` CC ) ) |
4 |
2 3
|
mp3an1 |
|- ( ( A e. CC /\ N e. NN0 ) -> F e. ( Poly ` CC ) ) |
5 |
|
simpr |
|- ( ( A e. CC /\ N e. NN0 ) -> N e. NN0 ) |
6 |
|
simpl |
|- ( ( A e. CC /\ N e. NN0 ) -> A e. CC ) |
7 |
|
0cn |
|- 0 e. CC |
8 |
|
ifcl |
|- ( ( A e. CC /\ 0 e. CC ) -> if ( n = N , A , 0 ) e. CC ) |
9 |
6 7 8
|
sylancl |
|- ( ( A e. CC /\ N e. NN0 ) -> if ( n = N , A , 0 ) e. CC ) |
10 |
9
|
adantr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ n e. NN0 ) -> if ( n = N , A , 0 ) e. CC ) |
11 |
10
|
fmpttd |
|- ( ( A e. CC /\ N e. NN0 ) -> ( n e. NN0 |-> if ( n = N , A , 0 ) ) : NN0 --> CC ) |
12 |
|
eqid |
|- ( n e. NN0 |-> if ( n = N , A , 0 ) ) = ( n e. NN0 |-> if ( n = N , A , 0 ) ) |
13 |
|
eqeq1 |
|- ( n = k -> ( n = N <-> k = N ) ) |
14 |
13
|
ifbid |
|- ( n = k -> if ( n = N , A , 0 ) = if ( k = N , A , 0 ) ) |
15 |
|
simpr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. NN0 ) -> k e. NN0 ) |
16 |
|
ifcl |
|- ( ( A e. CC /\ 0 e. CC ) -> if ( k = N , A , 0 ) e. CC ) |
17 |
6 7 16
|
sylancl |
|- ( ( A e. CC /\ N e. NN0 ) -> if ( k = N , A , 0 ) e. CC ) |
18 |
17
|
adantr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. NN0 ) -> if ( k = N , A , 0 ) e. CC ) |
19 |
12 14 15 18
|
fvmptd3 |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) = if ( k = N , A , 0 ) ) |
20 |
19
|
neeq1d |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. NN0 ) -> ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) =/= 0 <-> if ( k = N , A , 0 ) =/= 0 ) ) |
21 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
22 |
21
|
leidd |
|- ( N e. NN0 -> N <_ N ) |
23 |
22
|
ad2antlr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. NN0 ) -> N <_ N ) |
24 |
|
iffalse |
|- ( -. k = N -> if ( k = N , A , 0 ) = 0 ) |
25 |
24
|
necon1ai |
|- ( if ( k = N , A , 0 ) =/= 0 -> k = N ) |
26 |
25
|
breq1d |
|- ( if ( k = N , A , 0 ) =/= 0 -> ( k <_ N <-> N <_ N ) ) |
27 |
23 26
|
syl5ibrcom |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. NN0 ) -> ( if ( k = N , A , 0 ) =/= 0 -> k <_ N ) ) |
28 |
20 27
|
sylbid |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. NN0 ) -> ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) =/= 0 -> k <_ N ) ) |
29 |
28
|
ralrimiva |
|- ( ( A e. CC /\ N e. NN0 ) -> A. k e. NN0 ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) =/= 0 -> k <_ N ) ) |
30 |
|
plyco0 |
|- ( ( N e. NN0 /\ ( n e. NN0 |-> if ( n = N , A , 0 ) ) : NN0 --> CC ) -> ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) =/= 0 -> k <_ N ) ) ) |
31 |
5 11 30
|
syl2anc |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) =/= 0 -> k <_ N ) ) ) |
32 |
29 31
|
mpbird |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
33 |
1
|
ply1termlem |
|- ( ( A e. CC /\ N e. NN0 ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( if ( k = N , A , 0 ) x. ( z ^ k ) ) ) ) |
34 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
35 |
19
|
oveq1d |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. NN0 ) -> ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) x. ( z ^ k ) ) = ( if ( k = N , A , 0 ) x. ( z ^ k ) ) ) |
36 |
34 35
|
sylan2 |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) x. ( z ^ k ) ) = ( if ( k = N , A , 0 ) x. ( z ^ k ) ) ) |
37 |
36
|
sumeq2dv |
|- ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... N ) ( if ( k = N , A , 0 ) x. ( z ^ k ) ) ) |
38 |
37
|
mpteq2dv |
|- ( ( A e. CC /\ N e. NN0 ) -> ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( if ( k = N , A , 0 ) x. ( z ^ k ) ) ) ) |
39 |
33 38
|
eqtr4d |
|- ( ( A e. CC /\ N e. NN0 ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) x. ( z ^ k ) ) ) ) |
40 |
4 5 11 32 39
|
coeeq |
|- ( ( A e. CC /\ N e. NN0 ) -> ( coeff ` F ) = ( n e. NN0 |-> if ( n = N , A , 0 ) ) ) |
41 |
4
|
adantr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ A =/= 0 ) -> F e. ( Poly ` CC ) ) |
42 |
5
|
adantr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ A =/= 0 ) -> N e. NN0 ) |
43 |
11
|
adantr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ A =/= 0 ) -> ( n e. NN0 |-> if ( n = N , A , 0 ) ) : NN0 --> CC ) |
44 |
32
|
adantr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ A =/= 0 ) -> ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
45 |
39
|
adantr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ A =/= 0 ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` k ) x. ( z ^ k ) ) ) ) |
46 |
|
iftrue |
|- ( n = N -> if ( n = N , A , 0 ) = A ) |
47 |
46 12
|
fvmptg |
|- ( ( N e. NN0 /\ A e. CC ) -> ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` N ) = A ) |
48 |
47
|
ancoms |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` N ) = A ) |
49 |
48
|
neeq1d |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` N ) =/= 0 <-> A =/= 0 ) ) |
50 |
49
|
biimpar |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ A =/= 0 ) -> ( ( n e. NN0 |-> if ( n = N , A , 0 ) ) ` N ) =/= 0 ) |
51 |
41 42 43 44 45 50
|
dgreq |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ A =/= 0 ) -> ( deg ` F ) = N ) |
52 |
51
|
ex |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A =/= 0 -> ( deg ` F ) = N ) ) |
53 |
40 52
|
jca |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( coeff ` F ) = ( n e. NN0 |-> if ( n = N , A , 0 ) ) /\ ( A =/= 0 -> ( deg ` F ) = N ) ) ) |