Step |
Hyp |
Ref |
Expression |
1 |
|
coe1tm.z |
|- .0. = ( 0g ` R ) |
2 |
|
coe1tm.k |
|- K = ( Base ` R ) |
3 |
|
coe1tm.p |
|- P = ( Poly1 ` R ) |
4 |
|
coe1tm.x |
|- X = ( var1 ` R ) |
5 |
|
coe1tm.m |
|- .x. = ( .s ` P ) |
6 |
|
coe1tm.n |
|- N = ( mulGrp ` P ) |
7 |
|
coe1tm.e |
|- .^ = ( .g ` N ) |
8 |
1 2 3 4 5 6 7
|
coe1tm |
|- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) ) |
9 |
8
|
fveq1d |
|- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) = ( ( x e. NN0 |-> if ( x = D , C , .0. ) ) ` D ) ) |
10 |
|
eqid |
|- ( x e. NN0 |-> if ( x = D , C , .0. ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) |
11 |
|
iftrue |
|- ( x = D -> if ( x = D , C , .0. ) = C ) |
12 |
|
simp3 |
|- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> D e. NN0 ) |
13 |
|
simp2 |
|- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> C e. K ) |
14 |
10 11 12 13
|
fvmptd3 |
|- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( x e. NN0 |-> if ( x = D , C , .0. ) ) ` D ) = C ) |
15 |
9 14
|
eqtrd |
|- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) = C ) |