| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1tm.z |  |-  .0. = ( 0g ` R ) | 
						
							| 2 |  | coe1tm.k |  |-  K = ( Base ` R ) | 
						
							| 3 |  | coe1tm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | coe1tm.x |  |-  X = ( var1 ` R ) | 
						
							| 5 |  | coe1tm.m |  |-  .x. = ( .s ` P ) | 
						
							| 6 |  | coe1tm.n |  |-  N = ( mulGrp ` P ) | 
						
							| 7 |  | coe1tm.e |  |-  .^ = ( .g ` N ) | 
						
							| 8 | 1 2 3 4 5 6 7 | coe1tm |  |-  ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) ) | 
						
							| 9 | 8 | fveq1d |  |-  ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) = ( ( x e. NN0 |-> if ( x = D , C , .0. ) ) ` D ) ) | 
						
							| 10 |  | eqid |  |-  ( x e. NN0 |-> if ( x = D , C , .0. ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) | 
						
							| 11 |  | iftrue |  |-  ( x = D -> if ( x = D , C , .0. ) = C ) | 
						
							| 12 |  | simp3 |  |-  ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> D e. NN0 ) | 
						
							| 13 |  | simp2 |  |-  ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> C e. K ) | 
						
							| 14 | 10 11 12 13 | fvmptd3 |  |-  ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( x e. NN0 |-> if ( x = D , C , .0. ) ) ` D ) = C ) | 
						
							| 15 | 9 14 | eqtrd |  |-  ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) = C ) |