| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1tm.z |  |-  .0. = ( 0g ` R ) | 
						
							| 2 |  | coe1tm.k |  |-  K = ( Base ` R ) | 
						
							| 3 |  | coe1tm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | coe1tm.x |  |-  X = ( var1 ` R ) | 
						
							| 5 |  | coe1tm.m |  |-  .x. = ( .s ` P ) | 
						
							| 6 |  | coe1tm.n |  |-  N = ( mulGrp ` P ) | 
						
							| 7 |  | coe1tm.e |  |-  .^ = ( .g ` N ) | 
						
							| 8 |  | coe1tmfv2.r |  |-  ( ph -> R e. Ring ) | 
						
							| 9 |  | coe1tmfv2.c |  |-  ( ph -> C e. K ) | 
						
							| 10 |  | coe1tmfv2.d |  |-  ( ph -> D e. NN0 ) | 
						
							| 11 |  | coe1tmfv2.f |  |-  ( ph -> F e. NN0 ) | 
						
							| 12 |  | coe1tmfv2.q |  |-  ( ph -> D =/= F ) | 
						
							| 13 | 1 2 3 4 5 6 7 | coe1tm |  |-  ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) ) | 
						
							| 14 | 8 9 10 13 | syl3anc |  |-  ( ph -> ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) ) | 
						
							| 15 | 14 | fveq1d |  |-  ( ph -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` F ) = ( ( x e. NN0 |-> if ( x = D , C , .0. ) ) ` F ) ) | 
						
							| 16 |  | eqid |  |-  ( x e. NN0 |-> if ( x = D , C , .0. ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) | 
						
							| 17 |  | eqeq1 |  |-  ( x = F -> ( x = D <-> F = D ) ) | 
						
							| 18 | 17 | ifbid |  |-  ( x = F -> if ( x = D , C , .0. ) = if ( F = D , C , .0. ) ) | 
						
							| 19 | 2 1 | ring0cl |  |-  ( R e. Ring -> .0. e. K ) | 
						
							| 20 | 8 19 | syl |  |-  ( ph -> .0. e. K ) | 
						
							| 21 | 9 20 | ifcld |  |-  ( ph -> if ( F = D , C , .0. ) e. K ) | 
						
							| 22 | 16 18 11 21 | fvmptd3 |  |-  ( ph -> ( ( x e. NN0 |-> if ( x = D , C , .0. ) ) ` F ) = if ( F = D , C , .0. ) ) | 
						
							| 23 | 12 | necomd |  |-  ( ph -> F =/= D ) | 
						
							| 24 | 23 | neneqd |  |-  ( ph -> -. F = D ) | 
						
							| 25 | 24 | iffalsed |  |-  ( ph -> if ( F = D , C , .0. ) = .0. ) | 
						
							| 26 | 15 22 25 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` F ) = .0. ) |