Step |
Hyp |
Ref |
Expression |
1 |
|
coe1z.p |
|- P = ( Poly1 ` R ) |
2 |
|
coe1z.z |
|- .0. = ( 0g ` P ) |
3 |
|
coe1z.y |
|- Y = ( 0g ` R ) |
4 |
|
fconst6g |
|- ( a e. NN0 -> ( 1o X. { a } ) : 1o --> NN0 ) |
5 |
4
|
adantl |
|- ( ( R e. Ring /\ a e. NN0 ) -> ( 1o X. { a } ) : 1o --> NN0 ) |
6 |
|
nn0ex |
|- NN0 e. _V |
7 |
|
1oex |
|- 1o e. _V |
8 |
6 7
|
elmap |
|- ( ( 1o X. { a } ) e. ( NN0 ^m 1o ) <-> ( 1o X. { a } ) : 1o --> NN0 ) |
9 |
5 8
|
sylibr |
|- ( ( R e. Ring /\ a e. NN0 ) -> ( 1o X. { a } ) e. ( NN0 ^m 1o ) ) |
10 |
|
eqidd |
|- ( R e. Ring -> ( a e. NN0 |-> ( 1o X. { a } ) ) = ( a e. NN0 |-> ( 1o X. { a } ) ) ) |
11 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
12 |
|
psr1baslem |
|- ( NN0 ^m 1o ) = { c e. ( NN0 ^m 1o ) | ( `' c " NN ) e. Fin } |
13 |
11 1 2
|
ply1mpl0 |
|- .0. = ( 0g ` ( 1o mPoly R ) ) |
14 |
|
1on |
|- 1o e. On |
15 |
14
|
a1i |
|- ( R e. Ring -> 1o e. On ) |
16 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
17 |
11 12 3 13 15 16
|
mpl0 |
|- ( R e. Ring -> .0. = ( ( NN0 ^m 1o ) X. { Y } ) ) |
18 |
|
fconstmpt |
|- ( ( NN0 ^m 1o ) X. { Y } ) = ( b e. ( NN0 ^m 1o ) |-> Y ) |
19 |
17 18
|
eqtrdi |
|- ( R e. Ring -> .0. = ( b e. ( NN0 ^m 1o ) |-> Y ) ) |
20 |
|
eqidd |
|- ( b = ( 1o X. { a } ) -> Y = Y ) |
21 |
9 10 19 20
|
fmptco |
|- ( R e. Ring -> ( .0. o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) = ( a e. NN0 |-> Y ) ) |
22 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
23 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
24 |
23 2
|
ring0cl |
|- ( P e. Ring -> .0. e. ( Base ` P ) ) |
25 |
|
eqid |
|- ( coe1 ` .0. ) = ( coe1 ` .0. ) |
26 |
|
eqid |
|- ( a e. NN0 |-> ( 1o X. { a } ) ) = ( a e. NN0 |-> ( 1o X. { a } ) ) |
27 |
25 23 1 26
|
coe1fval2 |
|- ( .0. e. ( Base ` P ) -> ( coe1 ` .0. ) = ( .0. o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
28 |
22 24 27
|
3syl |
|- ( R e. Ring -> ( coe1 ` .0. ) = ( .0. o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
29 |
|
fconstmpt |
|- ( NN0 X. { Y } ) = ( a e. NN0 |-> Y ) |
30 |
29
|
a1i |
|- ( R e. Ring -> ( NN0 X. { Y } ) = ( a e. NN0 |-> Y ) ) |
31 |
21 28 30
|
3eqtr4d |
|- ( R e. Ring -> ( coe1 ` .0. ) = ( NN0 X. { Y } ) ) |