| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plycjOLD.1 |  |-  N = ( deg ` F ) | 
						
							| 2 |  | plycjOLD.2 |  |-  G = ( ( * o. F ) o. * ) | 
						
							| 3 |  | coecjOLD.3 |  |-  A = ( coeff ` F ) | 
						
							| 4 |  | cjcl |  |-  ( x e. CC -> ( * ` x ) e. CC ) | 
						
							| 5 | 4 | adantl |  |-  ( ( F e. ( Poly ` S ) /\ x e. CC ) -> ( * ` x ) e. CC ) | 
						
							| 6 |  | plyssc |  |-  ( Poly ` S ) C_ ( Poly ` CC ) | 
						
							| 7 | 6 | sseli |  |-  ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) | 
						
							| 8 | 1 2 5 7 | plycjOLD |  |-  ( F e. ( Poly ` S ) -> G e. ( Poly ` CC ) ) | 
						
							| 9 |  | dgrcl |  |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) | 
						
							| 10 | 1 9 | eqeltrid |  |-  ( F e. ( Poly ` S ) -> N e. NN0 ) | 
						
							| 11 |  | cjf |  |-  * : CC --> CC | 
						
							| 12 | 3 | coef3 |  |-  ( F e. ( Poly ` S ) -> A : NN0 --> CC ) | 
						
							| 13 |  | fco |  |-  ( ( * : CC --> CC /\ A : NN0 --> CC ) -> ( * o. A ) : NN0 --> CC ) | 
						
							| 14 | 11 12 13 | sylancr |  |-  ( F e. ( Poly ` S ) -> ( * o. A ) : NN0 --> CC ) | 
						
							| 15 |  | fvco3 |  |-  ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( ( * o. A ) ` k ) = ( * ` ( A ` k ) ) ) | 
						
							| 16 | 12 15 | sylan |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( * o. A ) ` k ) = ( * ` ( A ` k ) ) ) | 
						
							| 17 |  | cj0 |  |-  ( * ` 0 ) = 0 | 
						
							| 18 | 17 | eqcomi |  |-  0 = ( * ` 0 ) | 
						
							| 19 | 18 | a1i |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> 0 = ( * ` 0 ) ) | 
						
							| 20 | 16 19 | eqeq12d |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( ( * o. A ) ` k ) = 0 <-> ( * ` ( A ` k ) ) = ( * ` 0 ) ) ) | 
						
							| 21 | 12 | ffvelcdmda |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) | 
						
							| 22 |  | 0cnd |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> 0 e. CC ) | 
						
							| 23 |  | cj11 |  |-  ( ( ( A ` k ) e. CC /\ 0 e. CC ) -> ( ( * ` ( A ` k ) ) = ( * ` 0 ) <-> ( A ` k ) = 0 ) ) | 
						
							| 24 | 21 22 23 | syl2anc |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( * ` ( A ` k ) ) = ( * ` 0 ) <-> ( A ` k ) = 0 ) ) | 
						
							| 25 | 20 24 | bitrd |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( ( * o. A ) ` k ) = 0 <-> ( A ` k ) = 0 ) ) | 
						
							| 26 | 25 | necon3bid |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( ( * o. A ) ` k ) =/= 0 <-> ( A ` k ) =/= 0 ) ) | 
						
							| 27 | 3 1 | dgrub2 |  |-  ( F e. ( Poly ` S ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) | 
						
							| 28 |  | plyco0 |  |-  ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) | 
						
							| 29 | 10 12 28 | syl2anc |  |-  ( F e. ( Poly ` S ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) | 
						
							| 30 | 27 29 | mpbid |  |-  ( F e. ( Poly ` S ) -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) | 
						
							| 31 | 30 | r19.21bi |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) | 
						
							| 32 | 26 31 | sylbid |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( ( * o. A ) ` k ) =/= 0 -> k <_ N ) ) | 
						
							| 33 | 32 | ralrimiva |  |-  ( F e. ( Poly ` S ) -> A. k e. NN0 ( ( ( * o. A ) ` k ) =/= 0 -> k <_ N ) ) | 
						
							| 34 |  | plyco0 |  |-  ( ( N e. NN0 /\ ( * o. A ) : NN0 --> CC ) -> ( ( ( * o. A ) " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( ( * o. A ) ` k ) =/= 0 -> k <_ N ) ) ) | 
						
							| 35 | 10 14 34 | syl2anc |  |-  ( F e. ( Poly ` S ) -> ( ( ( * o. A ) " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( ( * o. A ) ` k ) =/= 0 -> k <_ N ) ) ) | 
						
							| 36 | 33 35 | mpbird |  |-  ( F e. ( Poly ` S ) -> ( ( * o. A ) " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) | 
						
							| 37 | 1 2 3 | plycjlem |  |-  ( F e. ( Poly ` S ) -> G = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 38 | 8 10 14 36 37 | coeeq |  |-  ( F e. ( Poly ` S ) -> ( coeff ` G ) = ( * o. A ) ) |