Step |
Hyp |
Ref |
Expression |
1 |
|
coeeq.1 |
|- ( ph -> F e. ( Poly ` S ) ) |
2 |
|
coeeq.2 |
|- ( ph -> N e. NN0 ) |
3 |
|
coeeq.3 |
|- ( ph -> A : NN0 --> CC ) |
4 |
|
coeeq.4 |
|- ( ph -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
5 |
|
coeeq.5 |
|- ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
6 |
|
coeval |
|- ( F e. ( Poly ` S ) -> ( coeff ` F ) = ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |
7 |
1 6
|
syl |
|- ( ph -> ( coeff ` F ) = ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |
8 |
|
fvoveq1 |
|- ( n = N -> ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) ) |
9 |
8
|
imaeq2d |
|- ( n = N -> ( A " ( ZZ>= ` ( n + 1 ) ) ) = ( A " ( ZZ>= ` ( N + 1 ) ) ) ) |
10 |
9
|
eqeq1d |
|- ( n = N -> ( ( A " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } <-> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) ) |
11 |
|
oveq2 |
|- ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) |
12 |
11
|
sumeq1d |
|- ( n = N -> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) |
13 |
12
|
mpteq2dv |
|- ( n = N -> ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
14 |
13
|
eqeq2d |
|- ( n = N -> ( F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) <-> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) ) |
15 |
10 14
|
anbi12d |
|- ( n = N -> ( ( ( A " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) ) <-> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) ) ) |
16 |
15
|
rspcev |
|- ( ( N e. NN0 /\ ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) ) -> E. n e. NN0 ( ( A " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) ) ) |
17 |
2 4 5 16
|
syl12anc |
|- ( ph -> E. n e. NN0 ( ( A " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) ) ) |
18 |
|
cnex |
|- CC e. _V |
19 |
|
nn0ex |
|- NN0 e. _V |
20 |
18 19
|
elmap |
|- ( A e. ( CC ^m NN0 ) <-> A : NN0 --> CC ) |
21 |
3 20
|
sylibr |
|- ( ph -> A e. ( CC ^m NN0 ) ) |
22 |
|
coeeu |
|- ( F e. ( Poly ` S ) -> E! a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
23 |
1 22
|
syl |
|- ( ph -> E! a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
24 |
|
imaeq1 |
|- ( a = A -> ( a " ( ZZ>= ` ( n + 1 ) ) ) = ( A " ( ZZ>= ` ( n + 1 ) ) ) ) |
25 |
24
|
eqeq1d |
|- ( a = A -> ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } <-> ( A " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } ) ) |
26 |
|
fveq1 |
|- ( a = A -> ( a ` k ) = ( A ` k ) ) |
27 |
26
|
oveq1d |
|- ( a = A -> ( ( a ` k ) x. ( z ^ k ) ) = ( ( A ` k ) x. ( z ^ k ) ) ) |
28 |
27
|
sumeq2sdv |
|- ( a = A -> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) |
29 |
28
|
mpteq2dv |
|- ( a = A -> ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
30 |
29
|
eqeq2d |
|- ( a = A -> ( F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) <-> F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) ) ) |
31 |
25 30
|
anbi12d |
|- ( a = A -> ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> ( ( A " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) ) ) ) |
32 |
31
|
rexbidv |
|- ( a = A -> ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. n e. NN0 ( ( A " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) ) ) ) |
33 |
32
|
riota2 |
|- ( ( A e. ( CC ^m NN0 ) /\ E! a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) -> ( E. n e. NN0 ( ( A " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) ) <-> ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) = A ) ) |
34 |
21 23 33
|
syl2anc |
|- ( ph -> ( E. n e. NN0 ( ( A " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( z ^ k ) ) ) ) <-> ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) = A ) ) |
35 |
17 34
|
mpbid |
|- ( ph -> ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) = A ) |
36 |
7 35
|
eqtrd |
|- ( ph -> ( coeff ` F ) = A ) |