| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyssc |  |-  ( Poly ` S ) C_ ( Poly ` CC ) | 
						
							| 2 | 1 | sseli |  |-  ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) | 
						
							| 3 |  | elply2 |  |-  ( F e. ( Poly ` CC ) <-> ( CC C_ CC /\ E. n e. NN0 E. a e. ( ( CC u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) | 
						
							| 4 | 3 | simprbi |  |-  ( F e. ( Poly ` CC ) -> E. n e. NN0 E. a e. ( ( CC u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 5 |  | rexcom |  |-  ( E. n e. NN0 E. a e. ( ( CC u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. a e. ( ( CC u. { 0 } ) ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 6 | 4 5 | sylib |  |-  ( F e. ( Poly ` CC ) -> E. a e. ( ( CC u. { 0 } ) ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 7 | 2 6 | syl |  |-  ( F e. ( Poly ` S ) -> E. a e. ( ( CC u. { 0 } ) ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 8 |  | 0cn |  |-  0 e. CC | 
						
							| 9 |  | snssi |  |-  ( 0 e. CC -> { 0 } C_ CC ) | 
						
							| 10 | 8 9 | ax-mp |  |-  { 0 } C_ CC | 
						
							| 11 |  | ssequn2 |  |-  ( { 0 } C_ CC <-> ( CC u. { 0 } ) = CC ) | 
						
							| 12 | 10 11 | mpbi |  |-  ( CC u. { 0 } ) = CC | 
						
							| 13 | 12 | oveq1i |  |-  ( ( CC u. { 0 } ) ^m NN0 ) = ( CC ^m NN0 ) | 
						
							| 14 | 13 | rexeqi |  |-  ( E. a e. ( ( CC u. { 0 } ) ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 15 | 7 14 | sylib |  |-  ( F e. ( Poly ` S ) -> E. a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 16 |  | reeanv |  |-  ( E. n e. NN0 E. m e. NN0 ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) <-> ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) | 
						
							| 17 |  | simp1l |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F e. ( Poly ` S ) ) | 
						
							| 18 |  | simp1rl |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> a e. ( CC ^m NN0 ) ) | 
						
							| 19 |  | simp1rr |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> b e. ( CC ^m NN0 ) ) | 
						
							| 20 |  | simp2l |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> n e. NN0 ) | 
						
							| 21 |  | simp2r |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> m e. NN0 ) | 
						
							| 22 |  | simp3ll |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } ) | 
						
							| 23 |  | simp3rl |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } ) | 
						
							| 24 |  | simp3lr |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 25 |  | oveq1 |  |-  ( z = w -> ( z ^ k ) = ( w ^ k ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( z = w -> ( ( a ` k ) x. ( z ^ k ) ) = ( ( a ` k ) x. ( w ^ k ) ) ) | 
						
							| 27 | 26 | sumeq2sdv |  |-  ( z = w -> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( w ^ k ) ) ) | 
						
							| 28 |  | fveq2 |  |-  ( k = j -> ( a ` k ) = ( a ` j ) ) | 
						
							| 29 |  | oveq2 |  |-  ( k = j -> ( w ^ k ) = ( w ^ j ) ) | 
						
							| 30 | 28 29 | oveq12d |  |-  ( k = j -> ( ( a ` k ) x. ( w ^ k ) ) = ( ( a ` j ) x. ( w ^ j ) ) ) | 
						
							| 31 | 30 | cbvsumv |  |-  sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( w ^ k ) ) = sum_ j e. ( 0 ... n ) ( ( a ` j ) x. ( w ^ j ) ) | 
						
							| 32 | 27 31 | eqtrdi |  |-  ( z = w -> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ j e. ( 0 ... n ) ( ( a ` j ) x. ( w ^ j ) ) ) | 
						
							| 33 | 32 | cbvmptv |  |-  ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) = ( w e. CC |-> sum_ j e. ( 0 ... n ) ( ( a ` j ) x. ( w ^ j ) ) ) | 
						
							| 34 | 24 33 | eqtrdi |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( w e. CC |-> sum_ j e. ( 0 ... n ) ( ( a ` j ) x. ( w ^ j ) ) ) ) | 
						
							| 35 |  | simp3rr |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 36 | 25 | oveq2d |  |-  ( z = w -> ( ( b ` k ) x. ( z ^ k ) ) = ( ( b ` k ) x. ( w ^ k ) ) ) | 
						
							| 37 | 36 | sumeq2sdv |  |-  ( z = w -> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( w ^ k ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( k = j -> ( b ` k ) = ( b ` j ) ) | 
						
							| 39 | 38 29 | oveq12d |  |-  ( k = j -> ( ( b ` k ) x. ( w ^ k ) ) = ( ( b ` j ) x. ( w ^ j ) ) ) | 
						
							| 40 | 39 | cbvsumv |  |-  sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( w ^ k ) ) = sum_ j e. ( 0 ... m ) ( ( b ` j ) x. ( w ^ j ) ) | 
						
							| 41 | 37 40 | eqtrdi |  |-  ( z = w -> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) = sum_ j e. ( 0 ... m ) ( ( b ` j ) x. ( w ^ j ) ) ) | 
						
							| 42 | 41 | cbvmptv |  |-  ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) = ( w e. CC |-> sum_ j e. ( 0 ... m ) ( ( b ` j ) x. ( w ^ j ) ) ) | 
						
							| 43 | 35 42 | eqtrdi |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( w e. CC |-> sum_ j e. ( 0 ... m ) ( ( b ` j ) x. ( w ^ j ) ) ) ) | 
						
							| 44 | 17 18 19 20 21 22 23 34 43 | coeeulem |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> a = b ) | 
						
							| 45 | 44 | 3expia |  |-  ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) ) -> ( ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> a = b ) ) | 
						
							| 46 | 45 | rexlimdvva |  |-  ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) -> ( E. n e. NN0 E. m e. NN0 ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> a = b ) ) | 
						
							| 47 | 16 46 | biimtrrid |  |-  ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) -> ( ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> a = b ) ) | 
						
							| 48 | 47 | ralrimivva |  |-  ( F e. ( Poly ` S ) -> A. a e. ( CC ^m NN0 ) A. b e. ( CC ^m NN0 ) ( ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> a = b ) ) | 
						
							| 49 |  | imaeq1 |  |-  ( a = b -> ( a " ( ZZ>= ` ( n + 1 ) ) ) = ( b " ( ZZ>= ` ( n + 1 ) ) ) ) | 
						
							| 50 | 49 | eqeq1d |  |-  ( a = b -> ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } <-> ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } ) ) | 
						
							| 51 |  | fveq1 |  |-  ( a = b -> ( a ` k ) = ( b ` k ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( a = b -> ( ( a ` k ) x. ( z ^ k ) ) = ( ( b ` k ) x. ( z ^ k ) ) ) | 
						
							| 53 | 52 | sumeq2sdv |  |-  ( a = b -> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) | 
						
							| 54 | 53 | mpteq2dv |  |-  ( a = b -> ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 55 | 54 | eqeq2d |  |-  ( a = b -> ( F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) <-> F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 56 | 50 55 | anbi12d |  |-  ( a = b -> ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) | 
						
							| 57 | 56 | rexbidv |  |-  ( a = b -> ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. n e. NN0 ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) | 
						
							| 58 |  | fvoveq1 |  |-  ( n = m -> ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` ( m + 1 ) ) ) | 
						
							| 59 | 58 | imaeq2d |  |-  ( n = m -> ( b " ( ZZ>= ` ( n + 1 ) ) ) = ( b " ( ZZ>= ` ( m + 1 ) ) ) ) | 
						
							| 60 | 59 | eqeq1d |  |-  ( n = m -> ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } <-> ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } ) ) | 
						
							| 61 |  | oveq2 |  |-  ( n = m -> ( 0 ... n ) = ( 0 ... m ) ) | 
						
							| 62 | 61 | sumeq1d |  |-  ( n = m -> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) | 
						
							| 63 | 62 | mpteq2dv |  |-  ( n = m -> ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 64 | 63 | eqeq2d |  |-  ( n = m -> ( F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) <-> F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 65 | 60 64 | anbi12d |  |-  ( n = m -> ( ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) <-> ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) | 
						
							| 66 | 65 | cbvrexvw |  |-  ( E. n e. NN0 ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) <-> E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 67 | 57 66 | bitrdi |  |-  ( a = b -> ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) | 
						
							| 68 | 67 | reu4 |  |-  ( E! a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> ( E. a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ A. a e. ( CC ^m NN0 ) A. b e. ( CC ^m NN0 ) ( ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> a = b ) ) ) | 
						
							| 69 | 15 48 68 | sylanbrc |  |-  ( F e. ( Poly ` S ) -> E! a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |