Step |
Hyp |
Ref |
Expression |
1 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
2 |
1
|
sseli |
|- ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) |
3 |
|
elply2 |
|- ( F e. ( Poly ` CC ) <-> ( CC C_ CC /\ E. n e. NN0 E. a e. ( ( CC u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |
4 |
3
|
simprbi |
|- ( F e. ( Poly ` CC ) -> E. n e. NN0 E. a e. ( ( CC u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
5 |
|
rexcom |
|- ( E. n e. NN0 E. a e. ( ( CC u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. a e. ( ( CC u. { 0 } ) ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
6 |
4 5
|
sylib |
|- ( F e. ( Poly ` CC ) -> E. a e. ( ( CC u. { 0 } ) ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
7 |
2 6
|
syl |
|- ( F e. ( Poly ` S ) -> E. a e. ( ( CC u. { 0 } ) ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
8 |
|
0cn |
|- 0 e. CC |
9 |
|
snssi |
|- ( 0 e. CC -> { 0 } C_ CC ) |
10 |
8 9
|
ax-mp |
|- { 0 } C_ CC |
11 |
|
ssequn2 |
|- ( { 0 } C_ CC <-> ( CC u. { 0 } ) = CC ) |
12 |
10 11
|
mpbi |
|- ( CC u. { 0 } ) = CC |
13 |
12
|
oveq1i |
|- ( ( CC u. { 0 } ) ^m NN0 ) = ( CC ^m NN0 ) |
14 |
13
|
rexeqi |
|- ( E. a e. ( ( CC u. { 0 } ) ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
15 |
7 14
|
sylib |
|- ( F e. ( Poly ` S ) -> E. a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
16 |
|
reeanv |
|- ( E. n e. NN0 E. m e. NN0 ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) <-> ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) |
17 |
|
simp1l |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F e. ( Poly ` S ) ) |
18 |
|
simp1rl |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> a e. ( CC ^m NN0 ) ) |
19 |
|
simp1rr |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> b e. ( CC ^m NN0 ) ) |
20 |
|
simp2l |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> n e. NN0 ) |
21 |
|
simp2r |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> m e. NN0 ) |
22 |
|
simp3ll |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } ) |
23 |
|
simp3rl |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } ) |
24 |
|
simp3lr |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) |
25 |
|
oveq1 |
|- ( z = w -> ( z ^ k ) = ( w ^ k ) ) |
26 |
25
|
oveq2d |
|- ( z = w -> ( ( a ` k ) x. ( z ^ k ) ) = ( ( a ` k ) x. ( w ^ k ) ) ) |
27 |
26
|
sumeq2sdv |
|- ( z = w -> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( w ^ k ) ) ) |
28 |
|
fveq2 |
|- ( k = j -> ( a ` k ) = ( a ` j ) ) |
29 |
|
oveq2 |
|- ( k = j -> ( w ^ k ) = ( w ^ j ) ) |
30 |
28 29
|
oveq12d |
|- ( k = j -> ( ( a ` k ) x. ( w ^ k ) ) = ( ( a ` j ) x. ( w ^ j ) ) ) |
31 |
30
|
cbvsumv |
|- sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( w ^ k ) ) = sum_ j e. ( 0 ... n ) ( ( a ` j ) x. ( w ^ j ) ) |
32 |
27 31
|
eqtrdi |
|- ( z = w -> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ j e. ( 0 ... n ) ( ( a ` j ) x. ( w ^ j ) ) ) |
33 |
32
|
cbvmptv |
|- ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) = ( w e. CC |-> sum_ j e. ( 0 ... n ) ( ( a ` j ) x. ( w ^ j ) ) ) |
34 |
24 33
|
eqtrdi |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( w e. CC |-> sum_ j e. ( 0 ... n ) ( ( a ` j ) x. ( w ^ j ) ) ) ) |
35 |
|
simp3rr |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) |
36 |
25
|
oveq2d |
|- ( z = w -> ( ( b ` k ) x. ( z ^ k ) ) = ( ( b ` k ) x. ( w ^ k ) ) ) |
37 |
36
|
sumeq2sdv |
|- ( z = w -> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( w ^ k ) ) ) |
38 |
|
fveq2 |
|- ( k = j -> ( b ` k ) = ( b ` j ) ) |
39 |
38 29
|
oveq12d |
|- ( k = j -> ( ( b ` k ) x. ( w ^ k ) ) = ( ( b ` j ) x. ( w ^ j ) ) ) |
40 |
39
|
cbvsumv |
|- sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( w ^ k ) ) = sum_ j e. ( 0 ... m ) ( ( b ` j ) x. ( w ^ j ) ) |
41 |
37 40
|
eqtrdi |
|- ( z = w -> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) = sum_ j e. ( 0 ... m ) ( ( b ` j ) x. ( w ^ j ) ) ) |
42 |
41
|
cbvmptv |
|- ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) = ( w e. CC |-> sum_ j e. ( 0 ... m ) ( ( b ` j ) x. ( w ^ j ) ) ) |
43 |
35 42
|
eqtrdi |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( w e. CC |-> sum_ j e. ( 0 ... m ) ( ( b ` j ) x. ( w ^ j ) ) ) ) |
44 |
17 18 19 20 21 22 23 34 43
|
coeeulem |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) /\ ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> a = b ) |
45 |
44
|
3expia |
|- ( ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) /\ ( n e. NN0 /\ m e. NN0 ) ) -> ( ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> a = b ) ) |
46 |
45
|
rexlimdvva |
|- ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) -> ( E. n e. NN0 E. m e. NN0 ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> a = b ) ) |
47 |
16 46
|
syl5bir |
|- ( ( F e. ( Poly ` S ) /\ ( a e. ( CC ^m NN0 ) /\ b e. ( CC ^m NN0 ) ) ) -> ( ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> a = b ) ) |
48 |
47
|
ralrimivva |
|- ( F e. ( Poly ` S ) -> A. a e. ( CC ^m NN0 ) A. b e. ( CC ^m NN0 ) ( ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> a = b ) ) |
49 |
|
imaeq1 |
|- ( a = b -> ( a " ( ZZ>= ` ( n + 1 ) ) ) = ( b " ( ZZ>= ` ( n + 1 ) ) ) ) |
50 |
49
|
eqeq1d |
|- ( a = b -> ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } <-> ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } ) ) |
51 |
|
fveq1 |
|- ( a = b -> ( a ` k ) = ( b ` k ) ) |
52 |
51
|
oveq1d |
|- ( a = b -> ( ( a ` k ) x. ( z ^ k ) ) = ( ( b ` k ) x. ( z ^ k ) ) ) |
53 |
52
|
sumeq2sdv |
|- ( a = b -> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) |
54 |
53
|
mpteq2dv |
|- ( a = b -> ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) |
55 |
54
|
eqeq2d |
|- ( a = b -> ( F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) <-> F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) |
56 |
50 55
|
anbi12d |
|- ( a = b -> ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) |
57 |
56
|
rexbidv |
|- ( a = b -> ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. n e. NN0 ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) |
58 |
|
fvoveq1 |
|- ( n = m -> ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` ( m + 1 ) ) ) |
59 |
58
|
imaeq2d |
|- ( n = m -> ( b " ( ZZ>= ` ( n + 1 ) ) ) = ( b " ( ZZ>= ` ( m + 1 ) ) ) ) |
60 |
59
|
eqeq1d |
|- ( n = m -> ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } <-> ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } ) ) |
61 |
|
oveq2 |
|- ( n = m -> ( 0 ... n ) = ( 0 ... m ) ) |
62 |
61
|
sumeq1d |
|- ( n = m -> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) |
63 |
62
|
mpteq2dv |
|- ( n = m -> ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) |
64 |
63
|
eqeq2d |
|- ( n = m -> ( F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) <-> F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) |
65 |
60 64
|
anbi12d |
|- ( n = m -> ( ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) <-> ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) |
66 |
65
|
cbvrexvw |
|- ( E. n e. NN0 ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) <-> E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) |
67 |
57 66
|
bitrdi |
|- ( a = b -> ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) |
68 |
67
|
reu4 |
|- ( E! a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> ( E. a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ A. a e. ( CC ^m NN0 ) A. b e. ( CC ^m NN0 ) ( ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. m e. NN0 ( ( b " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> a = b ) ) ) |
69 |
15 48 68
|
sylanbrc |
|- ( F e. ( Poly ` S ) -> E! a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |