| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coeeu.1 |  |-  ( ph -> F e. ( Poly ` S ) ) | 
						
							| 2 |  | coeeu.2 |  |-  ( ph -> A e. ( CC ^m NN0 ) ) | 
						
							| 3 |  | coeeu.3 |  |-  ( ph -> B e. ( CC ^m NN0 ) ) | 
						
							| 4 |  | coeeu.4 |  |-  ( ph -> M e. NN0 ) | 
						
							| 5 |  | coeeu.5 |  |-  ( ph -> N e. NN0 ) | 
						
							| 6 |  | coeeu.6 |  |-  ( ph -> ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) | 
						
							| 7 |  | coeeu.7 |  |-  ( ph -> ( B " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) | 
						
							| 8 |  | coeeu.8 |  |-  ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 9 |  | coeeu.9 |  |-  ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 10 |  | ssidd |  |-  ( ph -> CC C_ CC ) | 
						
							| 11 | 4 5 | nn0addcld |  |-  ( ph -> ( M + N ) e. NN0 ) | 
						
							| 12 |  | subcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x - y ) e. CC ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x - y ) e. CC ) | 
						
							| 14 |  | cnex |  |-  CC e. _V | 
						
							| 15 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 16 | 14 15 | elmap |  |-  ( A e. ( CC ^m NN0 ) <-> A : NN0 --> CC ) | 
						
							| 17 | 2 16 | sylib |  |-  ( ph -> A : NN0 --> CC ) | 
						
							| 18 | 14 15 | elmap |  |-  ( B e. ( CC ^m NN0 ) <-> B : NN0 --> CC ) | 
						
							| 19 | 3 18 | sylib |  |-  ( ph -> B : NN0 --> CC ) | 
						
							| 20 | 15 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 21 |  | inidm |  |-  ( NN0 i^i NN0 ) = NN0 | 
						
							| 22 | 13 17 19 20 20 21 | off |  |-  ( ph -> ( A oF - B ) : NN0 --> CC ) | 
						
							| 23 | 14 15 | elmap |  |-  ( ( A oF - B ) e. ( CC ^m NN0 ) <-> ( A oF - B ) : NN0 --> CC ) | 
						
							| 24 | 22 23 | sylibr |  |-  ( ph -> ( A oF - B ) e. ( CC ^m NN0 ) ) | 
						
							| 25 |  | 0cn |  |-  0 e. CC | 
						
							| 26 |  | snssi |  |-  ( 0 e. CC -> { 0 } C_ CC ) | 
						
							| 27 | 25 26 | ax-mp |  |-  { 0 } C_ CC | 
						
							| 28 |  | ssequn2 |  |-  ( { 0 } C_ CC <-> ( CC u. { 0 } ) = CC ) | 
						
							| 29 | 27 28 | mpbi |  |-  ( CC u. { 0 } ) = CC | 
						
							| 30 | 29 | oveq1i |  |-  ( ( CC u. { 0 } ) ^m NN0 ) = ( CC ^m NN0 ) | 
						
							| 31 | 24 30 | eleqtrrdi |  |-  ( ph -> ( A oF - B ) e. ( ( CC u. { 0 } ) ^m NN0 ) ) | 
						
							| 32 | 11 | nn0red |  |-  ( ph -> ( M + N ) e. RR ) | 
						
							| 33 |  | nn0re |  |-  ( k e. NN0 -> k e. RR ) | 
						
							| 34 |  | ltnle |  |-  ( ( ( M + N ) e. RR /\ k e. RR ) -> ( ( M + N ) < k <-> -. k <_ ( M + N ) ) ) | 
						
							| 35 | 32 33 34 | syl2an |  |-  ( ( ph /\ k e. NN0 ) -> ( ( M + N ) < k <-> -. k <_ ( M + N ) ) ) | 
						
							| 36 | 17 | ffnd |  |-  ( ph -> A Fn NN0 ) | 
						
							| 37 | 19 | ffnd |  |-  ( ph -> B Fn NN0 ) | 
						
							| 38 |  | eqidd |  |-  ( ( ph /\ k e. NN0 ) -> ( A ` k ) = ( A ` k ) ) | 
						
							| 39 |  | eqidd |  |-  ( ( ph /\ k e. NN0 ) -> ( B ` k ) = ( B ` k ) ) | 
						
							| 40 | 36 37 20 20 21 38 39 | ofval |  |-  ( ( ph /\ k e. NN0 ) -> ( ( A oF - B ) ` k ) = ( ( A ` k ) - ( B ` k ) ) ) | 
						
							| 41 | 40 | adantrr |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( A oF - B ) ` k ) = ( ( A ` k ) - ( B ` k ) ) ) | 
						
							| 42 | 4 | nn0red |  |-  ( ph -> M e. RR ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> M e. RR ) | 
						
							| 44 | 32 | adantr |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( M + N ) e. RR ) | 
						
							| 45 | 33 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> k e. RR ) | 
						
							| 46 | 45 | adantrr |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> k e. RR ) | 
						
							| 47 | 4 | nn0cnd |  |-  ( ph -> M e. CC ) | 
						
							| 48 | 5 | nn0cnd |  |-  ( ph -> N e. CC ) | 
						
							| 49 | 47 48 | addcomd |  |-  ( ph -> ( M + N ) = ( N + M ) ) | 
						
							| 50 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 51 | 5 50 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 52 | 4 | nn0zd |  |-  ( ph -> M e. ZZ ) | 
						
							| 53 |  | eluzadd |  |-  ( ( N e. ( ZZ>= ` 0 ) /\ M e. ZZ ) -> ( N + M ) e. ( ZZ>= ` ( 0 + M ) ) ) | 
						
							| 54 | 51 52 53 | syl2anc |  |-  ( ph -> ( N + M ) e. ( ZZ>= ` ( 0 + M ) ) ) | 
						
							| 55 | 49 54 | eqeltrd |  |-  ( ph -> ( M + N ) e. ( ZZ>= ` ( 0 + M ) ) ) | 
						
							| 56 | 47 | addlidd |  |-  ( ph -> ( 0 + M ) = M ) | 
						
							| 57 | 56 | fveq2d |  |-  ( ph -> ( ZZ>= ` ( 0 + M ) ) = ( ZZ>= ` M ) ) | 
						
							| 58 | 55 57 | eleqtrd |  |-  ( ph -> ( M + N ) e. ( ZZ>= ` M ) ) | 
						
							| 59 |  | eluzle |  |-  ( ( M + N ) e. ( ZZ>= ` M ) -> M <_ ( M + N ) ) | 
						
							| 60 | 58 59 | syl |  |-  ( ph -> M <_ ( M + N ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> M <_ ( M + N ) ) | 
						
							| 62 |  | simprr |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( M + N ) < k ) | 
						
							| 63 | 43 44 46 61 62 | lelttrd |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> M < k ) | 
						
							| 64 | 43 46 | ltnled |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( M < k <-> -. k <_ M ) ) | 
						
							| 65 | 63 64 | mpbid |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> -. k <_ M ) | 
						
							| 66 |  | plyco0 |  |-  ( ( M e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ M ) ) ) | 
						
							| 67 | 4 17 66 | syl2anc |  |-  ( ph -> ( ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ M ) ) ) | 
						
							| 68 | 6 67 | mpbid |  |-  ( ph -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ M ) ) | 
						
							| 69 | 68 | r19.21bi |  |-  ( ( ph /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ M ) ) | 
						
							| 70 | 69 | adantrr |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( A ` k ) =/= 0 -> k <_ M ) ) | 
						
							| 71 | 70 | necon1bd |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( -. k <_ M -> ( A ` k ) = 0 ) ) | 
						
							| 72 | 65 71 | mpd |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( A ` k ) = 0 ) | 
						
							| 73 | 5 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> N e. RR ) | 
						
							| 75 | 4 50 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 76 | 5 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 77 |  | eluzadd |  |-  ( ( M e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( M + N ) e. ( ZZ>= ` ( 0 + N ) ) ) | 
						
							| 78 | 75 76 77 | syl2anc |  |-  ( ph -> ( M + N ) e. ( ZZ>= ` ( 0 + N ) ) ) | 
						
							| 79 | 48 | addlidd |  |-  ( ph -> ( 0 + N ) = N ) | 
						
							| 80 | 79 | fveq2d |  |-  ( ph -> ( ZZ>= ` ( 0 + N ) ) = ( ZZ>= ` N ) ) | 
						
							| 81 | 78 80 | eleqtrd |  |-  ( ph -> ( M + N ) e. ( ZZ>= ` N ) ) | 
						
							| 82 |  | eluzle |  |-  ( ( M + N ) e. ( ZZ>= ` N ) -> N <_ ( M + N ) ) | 
						
							| 83 | 81 82 | syl |  |-  ( ph -> N <_ ( M + N ) ) | 
						
							| 84 | 83 | adantr |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> N <_ ( M + N ) ) | 
						
							| 85 | 74 44 46 84 62 | lelttrd |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> N < k ) | 
						
							| 86 | 74 46 | ltnled |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( N < k <-> -. k <_ N ) ) | 
						
							| 87 | 85 86 | mpbid |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> -. k <_ N ) | 
						
							| 88 |  | plyco0 |  |-  ( ( N e. NN0 /\ B : NN0 --> CC ) -> ( ( B " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( B ` k ) =/= 0 -> k <_ N ) ) ) | 
						
							| 89 | 5 19 88 | syl2anc |  |-  ( ph -> ( ( B " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( B ` k ) =/= 0 -> k <_ N ) ) ) | 
						
							| 90 | 7 89 | mpbid |  |-  ( ph -> A. k e. NN0 ( ( B ` k ) =/= 0 -> k <_ N ) ) | 
						
							| 91 | 90 | r19.21bi |  |-  ( ( ph /\ k e. NN0 ) -> ( ( B ` k ) =/= 0 -> k <_ N ) ) | 
						
							| 92 | 91 | adantrr |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( B ` k ) =/= 0 -> k <_ N ) ) | 
						
							| 93 | 92 | necon1bd |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( -. k <_ N -> ( B ` k ) = 0 ) ) | 
						
							| 94 | 87 93 | mpd |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( B ` k ) = 0 ) | 
						
							| 95 | 72 94 | oveq12d |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( A ` k ) - ( B ` k ) ) = ( 0 - 0 ) ) | 
						
							| 96 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 97 | 95 96 | eqtrdi |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( A ` k ) - ( B ` k ) ) = 0 ) | 
						
							| 98 | 41 97 | eqtrd |  |-  ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( A oF - B ) ` k ) = 0 ) | 
						
							| 99 | 98 | expr |  |-  ( ( ph /\ k e. NN0 ) -> ( ( M + N ) < k -> ( ( A oF - B ) ` k ) = 0 ) ) | 
						
							| 100 | 35 99 | sylbird |  |-  ( ( ph /\ k e. NN0 ) -> ( -. k <_ ( M + N ) -> ( ( A oF - B ) ` k ) = 0 ) ) | 
						
							| 101 | 100 | necon1ad |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( A oF - B ) ` k ) =/= 0 -> k <_ ( M + N ) ) ) | 
						
							| 102 | 101 | ralrimiva |  |-  ( ph -> A. k e. NN0 ( ( ( A oF - B ) ` k ) =/= 0 -> k <_ ( M + N ) ) ) | 
						
							| 103 |  | plyco0 |  |-  ( ( ( M + N ) e. NN0 /\ ( A oF - B ) : NN0 --> CC ) -> ( ( ( A oF - B ) " ( ZZ>= ` ( ( M + N ) + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( ( A oF - B ) ` k ) =/= 0 -> k <_ ( M + N ) ) ) ) | 
						
							| 104 | 11 22 103 | syl2anc |  |-  ( ph -> ( ( ( A oF - B ) " ( ZZ>= ` ( ( M + N ) + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( ( A oF - B ) ` k ) =/= 0 -> k <_ ( M + N ) ) ) ) | 
						
							| 105 | 102 104 | mpbird |  |-  ( ph -> ( ( A oF - B ) " ( ZZ>= ` ( ( M + N ) + 1 ) ) ) = { 0 } ) | 
						
							| 106 |  | df-0p |  |-  0p = ( CC X. { 0 } ) | 
						
							| 107 |  | fconstmpt |  |-  ( CC X. { 0 } ) = ( z e. CC |-> 0 ) | 
						
							| 108 | 106 107 | eqtri |  |-  0p = ( z e. CC |-> 0 ) | 
						
							| 109 |  | elfznn0 |  |-  ( k e. ( 0 ... ( M + N ) ) -> k e. NN0 ) | 
						
							| 110 | 40 | adantlr |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( A oF - B ) ` k ) = ( ( A ` k ) - ( B ` k ) ) ) | 
						
							| 111 | 110 | oveq1d |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) = ( ( ( A ` k ) - ( B ` k ) ) x. ( z ^ k ) ) ) | 
						
							| 112 | 17 | adantr |  |-  ( ( ph /\ z e. CC ) -> A : NN0 --> CC ) | 
						
							| 113 | 112 | ffvelcdmda |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) | 
						
							| 114 | 19 | adantr |  |-  ( ( ph /\ z e. CC ) -> B : NN0 --> CC ) | 
						
							| 115 | 114 | ffvelcdmda |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( B ` k ) e. CC ) | 
						
							| 116 |  | expcl |  |-  ( ( z e. CC /\ k e. NN0 ) -> ( z ^ k ) e. CC ) | 
						
							| 117 | 116 | adantll |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( z ^ k ) e. CC ) | 
						
							| 118 | 113 115 117 | subdird |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( ( A ` k ) - ( B ` k ) ) x. ( z ^ k ) ) = ( ( ( A ` k ) x. ( z ^ k ) ) - ( ( B ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 119 | 111 118 | eqtrd |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) = ( ( ( A ` k ) x. ( z ^ k ) ) - ( ( B ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 120 | 109 119 | sylan2 |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( M + N ) ) ) -> ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) = ( ( ( A ` k ) x. ( z ^ k ) ) - ( ( B ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 121 | 120 | sumeq2dv |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A ` k ) x. ( z ^ k ) ) - ( ( B ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 122 |  | fzfid |  |-  ( ( ph /\ z e. CC ) -> ( 0 ... ( M + N ) ) e. Fin ) | 
						
							| 123 | 113 117 | mulcld |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( z ^ k ) ) e. CC ) | 
						
							| 124 | 109 123 | sylan2 |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( M + N ) ) ) -> ( ( A ` k ) x. ( z ^ k ) ) e. CC ) | 
						
							| 125 | 115 117 | mulcld |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( B ` k ) x. ( z ^ k ) ) e. CC ) | 
						
							| 126 | 109 125 | sylan2 |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( M + N ) ) ) -> ( ( B ` k ) x. ( z ^ k ) ) e. CC ) | 
						
							| 127 | 122 124 126 | fsumsub |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A ` k ) x. ( z ^ k ) ) - ( ( B ` k ) x. ( z ^ k ) ) ) = ( sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) - sum_ k e. ( 0 ... ( M + N ) ) ( ( B ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 128 | 122 124 | fsumcl |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) e. CC ) | 
						
							| 129 | 8 9 | eqtr3d |  |-  ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 130 | 129 | fveq1d |  |-  ( ph -> ( ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ` z ) = ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ` z ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ph /\ z e. CC ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ` z ) = ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ` z ) ) | 
						
							| 132 |  | simpr |  |-  ( ( ph /\ z e. CC ) -> z e. CC ) | 
						
							| 133 |  | sumex |  |-  sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) e. _V | 
						
							| 134 |  | eqid |  |-  ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) | 
						
							| 135 | 134 | fvmpt2 |  |-  ( ( z e. CC /\ sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) e. _V ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) | 
						
							| 136 | 132 133 135 | sylancl |  |-  ( ( ph /\ z e. CC ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) | 
						
							| 137 |  | fzss2 |  |-  ( ( M + N ) e. ( ZZ>= ` M ) -> ( 0 ... M ) C_ ( 0 ... ( M + N ) ) ) | 
						
							| 138 | 58 137 | syl |  |-  ( ph -> ( 0 ... M ) C_ ( 0 ... ( M + N ) ) ) | 
						
							| 139 | 138 | adantr |  |-  ( ( ph /\ z e. CC ) -> ( 0 ... M ) C_ ( 0 ... ( M + N ) ) ) | 
						
							| 140 | 139 | sselda |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... M ) ) -> k e. ( 0 ... ( M + N ) ) ) | 
						
							| 141 | 140 124 | syldan |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... M ) ) -> ( ( A ` k ) x. ( z ^ k ) ) e. CC ) | 
						
							| 142 |  | eldifn |  |-  ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) -> -. k e. ( 0 ... M ) ) | 
						
							| 143 | 142 | adantl |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> -. k e. ( 0 ... M ) ) | 
						
							| 144 |  | eldifi |  |-  ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) -> k e. ( 0 ... ( M + N ) ) ) | 
						
							| 145 | 144 109 | syl |  |-  ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) -> k e. NN0 ) | 
						
							| 146 |  | simpr |  |-  ( ( ph /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 147 | 146 50 | eleqtrdi |  |-  ( ( ph /\ k e. NN0 ) -> k e. ( ZZ>= ` 0 ) ) | 
						
							| 148 | 52 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> M e. ZZ ) | 
						
							| 149 |  | elfz5 |  |-  ( ( k e. ( ZZ>= ` 0 ) /\ M e. ZZ ) -> ( k e. ( 0 ... M ) <-> k <_ M ) ) | 
						
							| 150 | 147 148 149 | syl2anc |  |-  ( ( ph /\ k e. NN0 ) -> ( k e. ( 0 ... M ) <-> k <_ M ) ) | 
						
							| 151 | 69 150 | sylibrd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k e. ( 0 ... M ) ) ) | 
						
							| 152 | 151 | adantlr |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k e. ( 0 ... M ) ) ) | 
						
							| 153 | 152 | necon1bd |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( -. k e. ( 0 ... M ) -> ( A ` k ) = 0 ) ) | 
						
							| 154 | 145 153 | sylan2 |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( -. k e. ( 0 ... M ) -> ( A ` k ) = 0 ) ) | 
						
							| 155 | 143 154 | mpd |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( A ` k ) = 0 ) | 
						
							| 156 | 155 | oveq1d |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( ( A ` k ) x. ( z ^ k ) ) = ( 0 x. ( z ^ k ) ) ) | 
						
							| 157 | 132 145 116 | syl2an |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( z ^ k ) e. CC ) | 
						
							| 158 | 157 | mul02d |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( 0 x. ( z ^ k ) ) = 0 ) | 
						
							| 159 | 156 158 | eqtrd |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( ( A ` k ) x. ( z ^ k ) ) = 0 ) | 
						
							| 160 | 139 141 159 122 | fsumss |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) ) | 
						
							| 161 | 136 160 | eqtrd |  |-  ( ( ph /\ z e. CC ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) ) | 
						
							| 162 |  | sumex |  |-  sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) e. _V | 
						
							| 163 |  | eqid |  |-  ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) | 
						
							| 164 | 163 | fvmpt2 |  |-  ( ( z e. CC /\ sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) e. _V ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) | 
						
							| 165 | 132 162 164 | sylancl |  |-  ( ( ph /\ z e. CC ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) | 
						
							| 166 |  | fzss2 |  |-  ( ( M + N ) e. ( ZZ>= ` N ) -> ( 0 ... N ) C_ ( 0 ... ( M + N ) ) ) | 
						
							| 167 | 81 166 | syl |  |-  ( ph -> ( 0 ... N ) C_ ( 0 ... ( M + N ) ) ) | 
						
							| 168 | 167 | adantr |  |-  ( ( ph /\ z e. CC ) -> ( 0 ... N ) C_ ( 0 ... ( M + N ) ) ) | 
						
							| 169 | 168 | sselda |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> k e. ( 0 ... ( M + N ) ) ) | 
						
							| 170 | 169 126 | syldan |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( B ` k ) x. ( z ^ k ) ) e. CC ) | 
						
							| 171 |  | eldifn |  |-  ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) -> -. k e. ( 0 ... N ) ) | 
						
							| 172 | 171 | adantl |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> -. k e. ( 0 ... N ) ) | 
						
							| 173 |  | eldifi |  |-  ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) -> k e. ( 0 ... ( M + N ) ) ) | 
						
							| 174 | 173 109 | syl |  |-  ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) -> k e. NN0 ) | 
						
							| 175 | 76 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> N e. ZZ ) | 
						
							| 176 |  | elfz5 |  |-  ( ( k e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) | 
						
							| 177 | 147 175 176 | syl2anc |  |-  ( ( ph /\ k e. NN0 ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) | 
						
							| 178 | 91 177 | sylibrd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( B ` k ) =/= 0 -> k e. ( 0 ... N ) ) ) | 
						
							| 179 | 178 | adantlr |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( B ` k ) =/= 0 -> k e. ( 0 ... N ) ) ) | 
						
							| 180 | 179 | necon1bd |  |-  ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( -. k e. ( 0 ... N ) -> ( B ` k ) = 0 ) ) | 
						
							| 181 | 174 180 | sylan2 |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( -. k e. ( 0 ... N ) -> ( B ` k ) = 0 ) ) | 
						
							| 182 | 172 181 | mpd |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( B ` k ) = 0 ) | 
						
							| 183 | 182 | oveq1d |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( ( B ` k ) x. ( z ^ k ) ) = ( 0 x. ( z ^ k ) ) ) | 
						
							| 184 | 132 174 116 | syl2an |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( z ^ k ) e. CC ) | 
						
							| 185 | 184 | mul02d |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( 0 x. ( z ^ k ) ) = 0 ) | 
						
							| 186 | 183 185 | eqtrd |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( ( B ` k ) x. ( z ^ k ) ) = 0 ) | 
						
							| 187 | 168 170 186 122 | fsumss |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( B ` k ) x. ( z ^ k ) ) ) | 
						
							| 188 | 165 187 | eqtrd |  |-  ( ( ph /\ z e. CC ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( B ` k ) x. ( z ^ k ) ) ) | 
						
							| 189 | 131 161 188 | 3eqtr3d |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( B ` k ) x. ( z ^ k ) ) ) | 
						
							| 190 | 128 189 | subeq0bd |  |-  ( ( ph /\ z e. CC ) -> ( sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) - sum_ k e. ( 0 ... ( M + N ) ) ( ( B ` k ) x. ( z ^ k ) ) ) = 0 ) | 
						
							| 191 | 121 127 190 | 3eqtrrd |  |-  ( ( ph /\ z e. CC ) -> 0 = sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) ) | 
						
							| 192 | 191 | mpteq2dva |  |-  ( ph -> ( z e. CC |-> 0 ) = ( z e. CC |-> sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 193 | 108 192 | eqtrid |  |-  ( ph -> 0p = ( z e. CC |-> sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 194 | 10 11 31 105 193 | plyeq0 |  |-  ( ph -> ( A oF - B ) = ( NN0 X. { 0 } ) ) | 
						
							| 195 |  | ofsubeq0 |  |-  ( ( NN0 e. _V /\ A : NN0 --> CC /\ B : NN0 --> CC ) -> ( ( A oF - B ) = ( NN0 X. { 0 } ) <-> A = B ) ) | 
						
							| 196 | 15 17 19 195 | mp3an2i |  |-  ( ph -> ( ( A oF - B ) = ( NN0 X. { 0 } ) <-> A = B ) ) | 
						
							| 197 | 194 196 | mpbid |  |-  ( ph -> A = B ) |