Metamath Proof Explorer


Theorem coef

Description: The domain and range of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypothesis dgrval.1
|- A = ( coeff ` F )
Assertion coef
|- ( F e. ( Poly ` S ) -> A : NN0 --> ( S u. { 0 } ) )

Proof

Step Hyp Ref Expression
1 dgrval.1
 |-  A = ( coeff ` F )
2 1 dgrlem
 |-  ( F e. ( Poly ` S ) -> ( A : NN0 --> ( S u. { 0 } ) /\ E. n e. ZZ A. x e. ( `' A " ( CC \ { 0 } ) ) x <_ n ) )
3 2 simpld
 |-  ( F e. ( Poly ` S ) -> A : NN0 --> ( S u. { 0 } ) )