Metamath Proof Explorer


Theorem coef3

Description: The domain and range of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypothesis dgrval.1
|- A = ( coeff ` F )
Assertion coef3
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC )

Proof

Step Hyp Ref Expression
1 dgrval.1
 |-  A = ( coeff ` F )
2 plyssc
 |-  ( Poly ` S ) C_ ( Poly ` CC )
3 2 sseli
 |-  ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) )
4 0cn
 |-  0 e. CC
5 1 coef2
 |-  ( ( F e. ( Poly ` CC ) /\ 0 e. CC ) -> A : NN0 --> CC )
6 3 4 5 sylancl
 |-  ( F e. ( Poly ` S ) -> A : NN0 --> CC )