Step |
Hyp |
Ref |
Expression |
1 |
|
coefv0.1 |
|- A = ( coeff ` F ) |
2 |
|
0cn |
|- 0 e. CC |
3 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
4 |
1 3
|
coeid2 |
|- ( ( F e. ( Poly ` S ) /\ 0 e. CC ) -> ( F ` 0 ) = sum_ k e. ( 0 ... ( deg ` F ) ) ( ( A ` k ) x. ( 0 ^ k ) ) ) |
5 |
2 4
|
mpan2 |
|- ( F e. ( Poly ` S ) -> ( F ` 0 ) = sum_ k e. ( 0 ... ( deg ` F ) ) ( ( A ` k ) x. ( 0 ^ k ) ) ) |
6 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
7 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
8 |
6 7
|
eleqtrdi |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. ( ZZ>= ` 0 ) ) |
9 |
|
fzss2 |
|- ( ( deg ` F ) e. ( ZZ>= ` 0 ) -> ( 0 ... 0 ) C_ ( 0 ... ( deg ` F ) ) ) |
10 |
8 9
|
syl |
|- ( F e. ( Poly ` S ) -> ( 0 ... 0 ) C_ ( 0 ... ( deg ` F ) ) ) |
11 |
|
elfz1eq |
|- ( k e. ( 0 ... 0 ) -> k = 0 ) |
12 |
|
fveq2 |
|- ( k = 0 -> ( A ` k ) = ( A ` 0 ) ) |
13 |
|
oveq2 |
|- ( k = 0 -> ( 0 ^ k ) = ( 0 ^ 0 ) ) |
14 |
|
0exp0e1 |
|- ( 0 ^ 0 ) = 1 |
15 |
13 14
|
eqtrdi |
|- ( k = 0 -> ( 0 ^ k ) = 1 ) |
16 |
12 15
|
oveq12d |
|- ( k = 0 -> ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` 0 ) x. 1 ) ) |
17 |
11 16
|
syl |
|- ( k e. ( 0 ... 0 ) -> ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` 0 ) x. 1 ) ) |
18 |
1
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
19 |
|
0nn0 |
|- 0 e. NN0 |
20 |
|
ffvelrn |
|- ( ( A : NN0 --> CC /\ 0 e. NN0 ) -> ( A ` 0 ) e. CC ) |
21 |
18 19 20
|
sylancl |
|- ( F e. ( Poly ` S ) -> ( A ` 0 ) e. CC ) |
22 |
21
|
mulid1d |
|- ( F e. ( Poly ` S ) -> ( ( A ` 0 ) x. 1 ) = ( A ` 0 ) ) |
23 |
17 22
|
sylan9eqr |
|- ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... 0 ) ) -> ( ( A ` k ) x. ( 0 ^ k ) ) = ( A ` 0 ) ) |
24 |
21
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... 0 ) ) -> ( A ` 0 ) e. CC ) |
25 |
23 24
|
eqeltrd |
|- ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... 0 ) ) -> ( ( A ` k ) x. ( 0 ^ k ) ) e. CC ) |
26 |
|
eldifn |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> -. k e. ( 0 ... 0 ) ) |
27 |
|
eldifi |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> k e. ( 0 ... ( deg ` F ) ) ) |
28 |
|
elfznn0 |
|- ( k e. ( 0 ... ( deg ` F ) ) -> k e. NN0 ) |
29 |
27 28
|
syl |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> k e. NN0 ) |
30 |
|
elnn0 |
|- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
31 |
29 30
|
sylib |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> ( k e. NN \/ k = 0 ) ) |
32 |
31
|
ord |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> ( -. k e. NN -> k = 0 ) ) |
33 |
|
id |
|- ( k = 0 -> k = 0 ) |
34 |
|
0z |
|- 0 e. ZZ |
35 |
|
elfz3 |
|- ( 0 e. ZZ -> 0 e. ( 0 ... 0 ) ) |
36 |
34 35
|
ax-mp |
|- 0 e. ( 0 ... 0 ) |
37 |
33 36
|
eqeltrdi |
|- ( k = 0 -> k e. ( 0 ... 0 ) ) |
38 |
32 37
|
syl6 |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> ( -. k e. NN -> k e. ( 0 ... 0 ) ) ) |
39 |
26 38
|
mt3d |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> k e. NN ) |
40 |
39
|
adantl |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> k e. NN ) |
41 |
40
|
0expd |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> ( 0 ^ k ) = 0 ) |
42 |
41
|
oveq2d |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` k ) x. 0 ) ) |
43 |
|
ffvelrn |
|- ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
44 |
18 29 43
|
syl2an |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> ( A ` k ) e. CC ) |
45 |
44
|
mul01d |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> ( ( A ` k ) x. 0 ) = 0 ) |
46 |
42 45
|
eqtrd |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> ( ( A ` k ) x. ( 0 ^ k ) ) = 0 ) |
47 |
|
fzfid |
|- ( F e. ( Poly ` S ) -> ( 0 ... ( deg ` F ) ) e. Fin ) |
48 |
10 25 46 47
|
fsumss |
|- ( F e. ( Poly ` S ) -> sum_ k e. ( 0 ... 0 ) ( ( A ` k ) x. ( 0 ^ k ) ) = sum_ k e. ( 0 ... ( deg ` F ) ) ( ( A ` k ) x. ( 0 ^ k ) ) ) |
49 |
22 21
|
eqeltrd |
|- ( F e. ( Poly ` S ) -> ( ( A ` 0 ) x. 1 ) e. CC ) |
50 |
16
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( ( A ` 0 ) x. 1 ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` 0 ) x. 1 ) ) |
51 |
34 49 50
|
sylancr |
|- ( F e. ( Poly ` S ) -> sum_ k e. ( 0 ... 0 ) ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` 0 ) x. 1 ) ) |
52 |
51 22
|
eqtrd |
|- ( F e. ( Poly ` S ) -> sum_ k e. ( 0 ... 0 ) ( ( A ` k ) x. ( 0 ^ k ) ) = ( A ` 0 ) ) |
53 |
5 48 52
|
3eqtr2d |
|- ( F e. ( Poly ` S ) -> ( F ` 0 ) = ( A ` 0 ) ) |