Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
|- A = ( coeff ` F ) |
2 |
|
dgrub.2 |
|- N = ( deg ` F ) |
3 |
|
elply2 |
|- ( F e. ( Poly ` S ) <-> ( S C_ CC /\ E. n e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) ) ) |
4 |
3
|
simprbi |
|- ( F e. ( Poly ` S ) -> E. n e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) ) |
5 |
|
simpll |
|- ( ( ( F e. ( Poly ` S ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) ) -> F e. ( Poly ` S ) ) |
6 |
|
simplrl |
|- ( ( ( F e. ( Poly ` S ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) ) -> n e. NN0 ) |
7 |
|
simplrr |
|- ( ( ( F e. ( Poly ` S ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) ) -> a e. ( ( S u. { 0 } ) ^m NN0 ) ) |
8 |
|
simprl |
|- ( ( ( F e. ( Poly ` S ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) ) -> ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } ) |
9 |
|
simprr |
|- ( ( ( F e. ( Poly ` S ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) ) -> F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) |
10 |
|
fveq2 |
|- ( m = k -> ( a ` m ) = ( a ` k ) ) |
11 |
|
oveq2 |
|- ( m = k -> ( x ^ m ) = ( x ^ k ) ) |
12 |
10 11
|
oveq12d |
|- ( m = k -> ( ( a ` m ) x. ( x ^ m ) ) = ( ( a ` k ) x. ( x ^ k ) ) ) |
13 |
12
|
cbvsumv |
|- sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) = sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( x ^ k ) ) |
14 |
|
oveq1 |
|- ( x = z -> ( x ^ k ) = ( z ^ k ) ) |
15 |
14
|
oveq2d |
|- ( x = z -> ( ( a ` k ) x. ( x ^ k ) ) = ( ( a ` k ) x. ( z ^ k ) ) ) |
16 |
15
|
sumeq2sdv |
|- ( x = z -> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( x ^ k ) ) = sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) |
17 |
13 16
|
syl5eq |
|- ( x = z -> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) = sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) |
18 |
17
|
cbvmptv |
|- ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) |
19 |
9 18
|
eqtrdi |
|- ( ( ( F e. ( Poly ` S ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) |
20 |
1 2 5 6 7 8 19
|
coeidlem |
|- ( ( ( F e. ( Poly ` S ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
21 |
20
|
ex |
|- ( ( F e. ( Poly ` S ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) ) |
22 |
21
|
rexlimdvva |
|- ( F e. ( Poly ` S ) -> ( E. n e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( x e. CC |-> sum_ m e. ( 0 ... n ) ( ( a ` m ) x. ( x ^ m ) ) ) ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) ) |
23 |
4 22
|
mpd |
|- ( F e. ( Poly ` S ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |