Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
|- A = ( coeff ` F ) |
2 |
|
dgrub.2 |
|- N = ( deg ` F ) |
3 |
1 2
|
coeid |
|- ( F e. ( Poly ` S ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
4 |
3
|
fveq1d |
|- ( F e. ( Poly ` S ) -> ( F ` X ) = ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` X ) ) |
5 |
|
oveq1 |
|- ( z = X -> ( z ^ k ) = ( X ^ k ) ) |
6 |
5
|
oveq2d |
|- ( z = X -> ( ( A ` k ) x. ( z ^ k ) ) = ( ( A ` k ) x. ( X ^ k ) ) ) |
7 |
6
|
sumeq2sdv |
|- ( z = X -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) ) |
8 |
|
eqid |
|- ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) |
9 |
|
sumex |
|- sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) e. _V |
10 |
7 8 9
|
fvmpt |
|- ( X e. CC -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` X ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) ) |
11 |
4 10
|
sylan9eq |
|- ( ( F e. ( Poly ` S ) /\ X e. CC ) -> ( F ` X ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) ) |