Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
|- A = ( coeff ` F ) |
2 |
|
dgrub.2 |
|- N = ( deg ` F ) |
3 |
1 2
|
coeid2 |
|- ( ( F e. ( Poly ` S ) /\ X e. CC ) -> ( F ` X ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) ) |
4 |
3
|
3adant2 |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( F ` X ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) ) |
5 |
|
fzss2 |
|- ( M e. ( ZZ>= ` N ) -> ( 0 ... N ) C_ ( 0 ... M ) ) |
6 |
5
|
3ad2ant2 |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( 0 ... N ) C_ ( 0 ... M ) ) |
7 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
8 |
1
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
9 |
8
|
3ad2ant1 |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> A : NN0 --> CC ) |
10 |
9
|
ffvelrnda |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
11 |
|
expcl |
|- ( ( X e. CC /\ k e. NN0 ) -> ( X ^ k ) e. CC ) |
12 |
11
|
3ad2antl3 |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. NN0 ) -> ( X ^ k ) e. CC ) |
13 |
10 12
|
mulcld |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( X ^ k ) ) e. CC ) |
14 |
7 13
|
sylan2 |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( X ^ k ) ) e. CC ) |
15 |
|
eldifn |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> -. k e. ( 0 ... N ) ) |
16 |
15
|
adantl |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> -. k e. ( 0 ... N ) ) |
17 |
|
simpl1 |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> F e. ( Poly ` S ) ) |
18 |
|
eldifi |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. ( 0 ... M ) ) |
19 |
|
elfzuz |
|- ( k e. ( 0 ... M ) -> k e. ( ZZ>= ` 0 ) ) |
20 |
18 19
|
syl |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. ( ZZ>= ` 0 ) ) |
21 |
20
|
adantl |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> k e. ( ZZ>= ` 0 ) ) |
22 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
23 |
21 22
|
eleqtrrdi |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> k e. NN0 ) |
24 |
1 2
|
dgrub |
|- ( ( F e. ( Poly ` S ) /\ k e. NN0 /\ ( A ` k ) =/= 0 ) -> k <_ N ) |
25 |
24
|
3expia |
|- ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) |
26 |
17 23 25
|
syl2anc |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) |
27 |
|
simpl2 |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> M e. ( ZZ>= ` N ) ) |
28 |
|
eluzel2 |
|- ( M e. ( ZZ>= ` N ) -> N e. ZZ ) |
29 |
27 28
|
syl |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> N e. ZZ ) |
30 |
|
elfz5 |
|- ( ( k e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) |
31 |
21 29 30
|
syl2anc |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) |
32 |
26 31
|
sylibrd |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) =/= 0 -> k e. ( 0 ... N ) ) ) |
33 |
32
|
necon1bd |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( -. k e. ( 0 ... N ) -> ( A ` k ) = 0 ) ) |
34 |
16 33
|
mpd |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( A ` k ) = 0 ) |
35 |
34
|
oveq1d |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) x. ( X ^ k ) ) = ( 0 x. ( X ^ k ) ) ) |
36 |
|
elfznn0 |
|- ( k e. ( 0 ... M ) -> k e. NN0 ) |
37 |
18 36
|
syl |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. NN0 ) |
38 |
37 12
|
sylan2 |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( X ^ k ) e. CC ) |
39 |
38
|
mul02d |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( 0 x. ( X ^ k ) ) = 0 ) |
40 |
35 39
|
eqtrd |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) x. ( X ^ k ) ) = 0 ) |
41 |
|
fzfid |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( 0 ... M ) e. Fin ) |
42 |
6 14 40 41
|
fsumss |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( X ^ k ) ) ) |
43 |
4 42
|
eqtrd |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( F ` X ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( X ^ k ) ) ) |