| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dgrub.1 |  |-  A = ( coeff ` F ) | 
						
							| 2 |  | dgrub.2 |  |-  N = ( deg ` F ) | 
						
							| 3 | 1 2 | coeid2 |  |-  ( ( F e. ( Poly ` S ) /\ X e. CC ) -> ( F ` X ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) ) | 
						
							| 4 | 3 | 3adant2 |  |-  ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( F ` X ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) ) | 
						
							| 5 |  | fzss2 |  |-  ( M e. ( ZZ>= ` N ) -> ( 0 ... N ) C_ ( 0 ... M ) ) | 
						
							| 6 | 5 | 3ad2ant2 |  |-  ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( 0 ... N ) C_ ( 0 ... M ) ) | 
						
							| 7 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 8 | 1 | coef3 |  |-  ( F e. ( Poly ` S ) -> A : NN0 --> CC ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> A : NN0 --> CC ) | 
						
							| 10 | 9 | ffvelcdmda |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) | 
						
							| 11 |  | expcl |  |-  ( ( X e. CC /\ k e. NN0 ) -> ( X ^ k ) e. CC ) | 
						
							| 12 | 11 | 3ad2antl3 |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. NN0 ) -> ( X ^ k ) e. CC ) | 
						
							| 13 | 10 12 | mulcld |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( X ^ k ) ) e. CC ) | 
						
							| 14 | 7 13 | sylan2 |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( X ^ k ) ) e. CC ) | 
						
							| 15 |  | eldifn |  |-  ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> -. k e. ( 0 ... N ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> -. k e. ( 0 ... N ) ) | 
						
							| 17 |  | simpl1 |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> F e. ( Poly ` S ) ) | 
						
							| 18 |  | eldifi |  |-  ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. ( 0 ... M ) ) | 
						
							| 19 |  | elfzuz |  |-  ( k e. ( 0 ... M ) -> k e. ( ZZ>= ` 0 ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. ( ZZ>= ` 0 ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> k e. ( ZZ>= ` 0 ) ) | 
						
							| 22 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 23 | 21 22 | eleqtrrdi |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> k e. NN0 ) | 
						
							| 24 | 1 2 | dgrub |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 /\ ( A ` k ) =/= 0 ) -> k <_ N ) | 
						
							| 25 | 24 | 3expia |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) | 
						
							| 26 | 17 23 25 | syl2anc |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) | 
						
							| 27 |  | simpl2 |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> M e. ( ZZ>= ` N ) ) | 
						
							| 28 |  | eluzel2 |  |-  ( M e. ( ZZ>= ` N ) -> N e. ZZ ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> N e. ZZ ) | 
						
							| 30 |  | elfz5 |  |-  ( ( k e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) | 
						
							| 31 | 21 29 30 | syl2anc |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) | 
						
							| 32 | 26 31 | sylibrd |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) =/= 0 -> k e. ( 0 ... N ) ) ) | 
						
							| 33 | 32 | necon1bd |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( -. k e. ( 0 ... N ) -> ( A ` k ) = 0 ) ) | 
						
							| 34 | 16 33 | mpd |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( A ` k ) = 0 ) | 
						
							| 35 | 34 | oveq1d |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) x. ( X ^ k ) ) = ( 0 x. ( X ^ k ) ) ) | 
						
							| 36 |  | elfznn0 |  |-  ( k e. ( 0 ... M ) -> k e. NN0 ) | 
						
							| 37 | 18 36 | syl |  |-  ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. NN0 ) | 
						
							| 38 | 37 12 | sylan2 |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( X ^ k ) e. CC ) | 
						
							| 39 | 38 | mul02d |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( 0 x. ( X ^ k ) ) = 0 ) | 
						
							| 40 | 35 39 | eqtrd |  |-  ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) x. ( X ^ k ) ) = 0 ) | 
						
							| 41 |  | fzfid |  |-  ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( 0 ... M ) e. Fin ) | 
						
							| 42 | 6 14 40 41 | fsumss |  |-  ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( X ^ k ) ) ) | 
						
							| 43 | 4 42 | eqtrd |  |-  ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( F ` X ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( X ^ k ) ) ) |