| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coeval |  |-  ( F e. ( Poly ` S ) -> ( coeff ` F ) = ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) | 
						
							| 2 |  | coeeu |  |-  ( F e. ( Poly ` S ) -> E! a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 3 |  | riotacl2 |  |-  ( E! a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) -> ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) e. { a e. ( CC ^m NN0 ) | E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) } ) | 
						
							| 4 | 2 3 | syl |  |-  ( F e. ( Poly ` S ) -> ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) e. { a e. ( CC ^m NN0 ) | E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) } ) | 
						
							| 5 | 1 4 | eqeltrd |  |-  ( F e. ( Poly ` S ) -> ( coeff ` F ) e. { a e. ( CC ^m NN0 ) | E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) } ) | 
						
							| 6 |  | imaeq1 |  |-  ( a = ( coeff ` F ) -> ( a " ( ZZ>= ` ( n + 1 ) ) ) = ( ( coeff ` F ) " ( ZZ>= ` ( n + 1 ) ) ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( a = ( coeff ` F ) -> ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } <-> ( ( coeff ` F ) " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } ) ) | 
						
							| 8 |  | fveq1 |  |-  ( a = ( coeff ` F ) -> ( a ` k ) = ( ( coeff ` F ) ` k ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( a = ( coeff ` F ) -> ( ( a ` k ) x. ( z ^ k ) ) = ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) | 
						
							| 10 | 9 | sumeq2sdv |  |-  ( a = ( coeff ` F ) -> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... n ) ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) | 
						
							| 11 | 10 | mpteq2dv |  |-  ( a = ( coeff ` F ) -> ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( a = ( coeff ` F ) -> ( F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) <-> F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 13 | 7 12 | anbi12d |  |-  ( a = ( coeff ` F ) -> ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> ( ( ( coeff ` F ) " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) ) ) ) | 
						
							| 14 | 13 | rexbidv |  |-  ( a = ( coeff ` F ) -> ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. n e. NN0 ( ( ( coeff ` F ) " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) ) ) ) | 
						
							| 15 | 14 | elrab |  |-  ( ( coeff ` F ) e. { a e. ( CC ^m NN0 ) | E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) } <-> ( ( coeff ` F ) e. ( CC ^m NN0 ) /\ E. n e. NN0 ( ( ( coeff ` F ) " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) ) ) ) | 
						
							| 16 | 5 15 | sylib |  |-  ( F e. ( Poly ` S ) -> ( ( coeff ` F ) e. ( CC ^m NN0 ) /\ E. n e. NN0 ( ( ( coeff ` F ) " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) ) ) ) |