Step |
Hyp |
Ref |
Expression |
1 |
|
coefv0.1 |
|- A = ( coeff ` F ) |
2 |
|
coeadd.2 |
|- B = ( coeff ` G ) |
3 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
4 |
|
eqid |
|- ( deg ` G ) = ( deg ` G ) |
5 |
1 2 3 4
|
coemullem |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( coeff ` ( F oF x. G ) ) = ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) /\ ( deg ` ( F oF x. G ) ) <_ ( ( deg ` F ) + ( deg ` G ) ) ) ) |
6 |
5
|
simpld |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( F oF x. G ) ) = ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) ) |
7 |
6
|
fveq1d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( coeff ` ( F oF x. G ) ) ` N ) = ( ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) ` N ) ) |
8 |
|
oveq2 |
|- ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) |
9 |
|
fvoveq1 |
|- ( n = N -> ( B ` ( n - k ) ) = ( B ` ( N - k ) ) ) |
10 |
9
|
oveq2d |
|- ( n = N -> ( ( A ` k ) x. ( B ` ( n - k ) ) ) = ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) |
11 |
10
|
adantr |
|- ( ( n = N /\ k e. ( 0 ... n ) ) -> ( ( A ` k ) x. ( B ` ( n - k ) ) ) = ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) |
12 |
8 11
|
sumeq12dv |
|- ( n = N -> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) |
13 |
|
eqid |
|- ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) = ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) |
14 |
|
sumex |
|- sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( B ` ( N - k ) ) ) e. _V |
15 |
12 13 14
|
fvmpt |
|- ( N e. NN0 -> ( ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) ` N ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) |
16 |
7 15
|
sylan9eq |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ N e. NN0 ) -> ( ( coeff ` ( F oF x. G ) ) ` N ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) |
17 |
16
|
3impa |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ N e. NN0 ) -> ( ( coeff ` ( F oF x. G ) ) ` N ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) |