| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coefv0.1 |  |-  A = ( coeff ` F ) | 
						
							| 2 |  | coeadd.2 |  |-  B = ( coeff ` G ) | 
						
							| 3 |  | eqid |  |-  ( deg ` F ) = ( deg ` F ) | 
						
							| 4 |  | eqid |  |-  ( deg ` G ) = ( deg ` G ) | 
						
							| 5 | 1 2 3 4 | coemullem |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( coeff ` ( F oF x. G ) ) = ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) /\ ( deg ` ( F oF x. G ) ) <_ ( ( deg ` F ) + ( deg ` G ) ) ) ) | 
						
							| 6 | 5 | simpld |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( F oF x. G ) ) = ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) ) | 
						
							| 7 | 6 | fveq1d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( coeff ` ( F oF x. G ) ) ` N ) = ( ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) ` N ) ) | 
						
							| 8 |  | oveq2 |  |-  ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) | 
						
							| 9 |  | fvoveq1 |  |-  ( n = N -> ( B ` ( n - k ) ) = ( B ` ( N - k ) ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( n = N -> ( ( A ` k ) x. ( B ` ( n - k ) ) ) = ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( n = N /\ k e. ( 0 ... n ) ) -> ( ( A ` k ) x. ( B ` ( n - k ) ) ) = ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) | 
						
							| 12 | 8 11 | sumeq12dv |  |-  ( n = N -> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) | 
						
							| 13 |  | eqid |  |-  ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) = ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) | 
						
							| 14 |  | sumex |  |-  sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( B ` ( N - k ) ) ) e. _V | 
						
							| 15 | 12 13 14 | fvmpt |  |-  ( N e. NN0 -> ( ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ` k ) x. ( B ` ( n - k ) ) ) ) ` N ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) | 
						
							| 16 | 7 15 | sylan9eq |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ N e. NN0 ) -> ( ( coeff ` ( F oF x. G ) ) ` N ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) | 
						
							| 17 | 16 | 3impa |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ N e. NN0 ) -> ( ( coeff ` ( F oF x. G ) ) ` N ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( B ` ( N - k ) ) ) ) |