| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coefv0.1 |  |-  A = ( coeff ` F ) | 
						
							| 2 |  | coeadd.2 |  |-  B = ( coeff ` G ) | 
						
							| 3 |  | coemulhi.3 |  |-  M = ( deg ` F ) | 
						
							| 4 |  | coemulhi.4 |  |-  N = ( deg ` G ) | 
						
							| 5 |  | dgrcl |  |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) | 
						
							| 6 | 3 5 | eqeltrid |  |-  ( F e. ( Poly ` S ) -> M e. NN0 ) | 
						
							| 7 |  | dgrcl |  |-  ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) | 
						
							| 8 | 4 7 | eqeltrid |  |-  ( G e. ( Poly ` S ) -> N e. NN0 ) | 
						
							| 9 |  | nn0addcl |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( M + N ) e. NN0 ) | 
						
							| 10 | 6 8 9 | syl2an |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( M + N ) e. NN0 ) | 
						
							| 11 | 1 2 | coemul |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ ( M + N ) e. NN0 ) -> ( ( coeff ` ( F oF x. G ) ) ` ( M + N ) ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) ) | 
						
							| 12 | 10 11 | mpd3an3 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( coeff ` ( F oF x. G ) ) ` ( M + N ) ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) ) | 
						
							| 13 | 8 | adantl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> N e. NN0 ) | 
						
							| 14 | 13 | nn0ge0d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> 0 <_ N ) | 
						
							| 15 | 6 | adantr |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> M e. NN0 ) | 
						
							| 16 | 15 | nn0red |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> M e. RR ) | 
						
							| 17 | 13 | nn0red |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> N e. RR ) | 
						
							| 18 | 16 17 | addge01d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( 0 <_ N <-> M <_ ( M + N ) ) ) | 
						
							| 19 | 14 18 | mpbid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> M <_ ( M + N ) ) | 
						
							| 20 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 21 | 15 20 | eleqtrdi |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 22 | 10 | nn0zd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( M + N ) e. ZZ ) | 
						
							| 23 |  | elfz5 |  |-  ( ( M e. ( ZZ>= ` 0 ) /\ ( M + N ) e. ZZ ) -> ( M e. ( 0 ... ( M + N ) ) <-> M <_ ( M + N ) ) ) | 
						
							| 24 | 21 22 23 | syl2anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( M e. ( 0 ... ( M + N ) ) <-> M <_ ( M + N ) ) ) | 
						
							| 25 | 19 24 | mpbird |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> M e. ( 0 ... ( M + N ) ) ) | 
						
							| 26 | 25 | snssd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> { M } C_ ( 0 ... ( M + N ) ) ) | 
						
							| 27 |  | elsni |  |-  ( k e. { M } -> k = M ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. { M } ) -> k = M ) | 
						
							| 29 |  | fveq2 |  |-  ( k = M -> ( A ` k ) = ( A ` M ) ) | 
						
							| 30 |  | oveq2 |  |-  ( k = M -> ( ( M + N ) - k ) = ( ( M + N ) - M ) ) | 
						
							| 31 | 30 | fveq2d |  |-  ( k = M -> ( B ` ( ( M + N ) - k ) ) = ( B ` ( ( M + N ) - M ) ) ) | 
						
							| 32 | 29 31 | oveq12d |  |-  ( k = M -> ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) = ( ( A ` M ) x. ( B ` ( ( M + N ) - M ) ) ) ) | 
						
							| 33 | 28 32 | syl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. { M } ) -> ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) = ( ( A ` M ) x. ( B ` ( ( M + N ) - M ) ) ) ) | 
						
							| 34 | 16 | recnd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> M e. CC ) | 
						
							| 35 | 17 | recnd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> N e. CC ) | 
						
							| 36 | 34 35 | pncan2d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( M + N ) - M ) = N ) | 
						
							| 37 | 36 | fveq2d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( B ` ( ( M + N ) - M ) ) = ( B ` N ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( A ` M ) x. ( B ` ( ( M + N ) - M ) ) ) = ( ( A ` M ) x. ( B ` N ) ) ) | 
						
							| 39 | 1 | coef3 |  |-  ( F e. ( Poly ` S ) -> A : NN0 --> CC ) | 
						
							| 40 | 39 | adantr |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> A : NN0 --> CC ) | 
						
							| 41 | 40 15 | ffvelcdmd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( A ` M ) e. CC ) | 
						
							| 42 | 2 | coef3 |  |-  ( G e. ( Poly ` S ) -> B : NN0 --> CC ) | 
						
							| 43 | 42 | adantl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> B : NN0 --> CC ) | 
						
							| 44 | 43 13 | ffvelcdmd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( B ` N ) e. CC ) | 
						
							| 45 | 41 44 | mulcld |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( A ` M ) x. ( B ` N ) ) e. CC ) | 
						
							| 46 | 38 45 | eqeltrd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( A ` M ) x. ( B ` ( ( M + N ) - M ) ) ) e. CC ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. { M } ) -> ( ( A ` M ) x. ( B ` ( ( M + N ) - M ) ) ) e. CC ) | 
						
							| 48 | 33 47 | eqeltrd |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. { M } ) -> ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) e. CC ) | 
						
							| 49 |  | simpl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> F e. ( Poly ` S ) ) | 
						
							| 50 |  | eldifi |  |-  ( k e. ( ( 0 ... ( M + N ) ) \ { M } ) -> k e. ( 0 ... ( M + N ) ) ) | 
						
							| 51 |  | elfznn0 |  |-  ( k e. ( 0 ... ( M + N ) ) -> k e. NN0 ) | 
						
							| 52 | 50 51 | syl |  |-  ( k e. ( ( 0 ... ( M + N ) ) \ { M } ) -> k e. NN0 ) | 
						
							| 53 | 1 3 | dgrub |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 /\ ( A ` k ) =/= 0 ) -> k <_ M ) | 
						
							| 54 | 53 | 3expia |  |-  ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ M ) ) | 
						
							| 55 | 49 52 54 | syl2an |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( ( A ` k ) =/= 0 -> k <_ M ) ) | 
						
							| 56 | 55 | necon1bd |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( -. k <_ M -> ( A ` k ) = 0 ) ) | 
						
							| 57 | 56 | imp |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. k <_ M ) -> ( A ` k ) = 0 ) | 
						
							| 58 | 57 | oveq1d |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. k <_ M ) -> ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) = ( 0 x. ( B ` ( ( M + N ) - k ) ) ) ) | 
						
							| 59 | 43 | ad2antrr |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. k <_ M ) -> B : NN0 --> CC ) | 
						
							| 60 | 50 | ad2antlr |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. k <_ M ) -> k e. ( 0 ... ( M + N ) ) ) | 
						
							| 61 |  | fznn0sub |  |-  ( k e. ( 0 ... ( M + N ) ) -> ( ( M + N ) - k ) e. NN0 ) | 
						
							| 62 | 60 61 | syl |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. k <_ M ) -> ( ( M + N ) - k ) e. NN0 ) | 
						
							| 63 | 59 62 | ffvelcdmd |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. k <_ M ) -> ( B ` ( ( M + N ) - k ) ) e. CC ) | 
						
							| 64 | 63 | mul02d |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. k <_ M ) -> ( 0 x. ( B ` ( ( M + N ) - k ) ) ) = 0 ) | 
						
							| 65 | 58 64 | eqtrd |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. k <_ M ) -> ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) = 0 ) | 
						
							| 66 | 16 | adantr |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> M e. RR ) | 
						
							| 67 | 50 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> k e. ( 0 ... ( M + N ) ) ) | 
						
							| 68 | 67 51 | syl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> k e. NN0 ) | 
						
							| 69 | 68 | nn0red |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> k e. RR ) | 
						
							| 70 | 17 | adantr |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> N e. RR ) | 
						
							| 71 | 66 69 70 | leadd1d |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( M <_ k <-> ( M + N ) <_ ( k + N ) ) ) | 
						
							| 72 | 10 | adantr |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( M + N ) e. NN0 ) | 
						
							| 73 | 72 | nn0red |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( M + N ) e. RR ) | 
						
							| 74 | 73 69 70 | lesubadd2d |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( ( ( M + N ) - k ) <_ N <-> ( M + N ) <_ ( k + N ) ) ) | 
						
							| 75 | 71 74 | bitr4d |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( M <_ k <-> ( ( M + N ) - k ) <_ N ) ) | 
						
							| 76 | 75 | notbid |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( -. M <_ k <-> -. ( ( M + N ) - k ) <_ N ) ) | 
						
							| 77 | 76 | biimpa |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. M <_ k ) -> -. ( ( M + N ) - k ) <_ N ) | 
						
							| 78 |  | simpr |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> G e. ( Poly ` S ) ) | 
						
							| 79 | 50 61 | syl |  |-  ( k e. ( ( 0 ... ( M + N ) ) \ { M } ) -> ( ( M + N ) - k ) e. NN0 ) | 
						
							| 80 | 2 4 | dgrub |  |-  ( ( G e. ( Poly ` S ) /\ ( ( M + N ) - k ) e. NN0 /\ ( B ` ( ( M + N ) - k ) ) =/= 0 ) -> ( ( M + N ) - k ) <_ N ) | 
						
							| 81 | 80 | 3expia |  |-  ( ( G e. ( Poly ` S ) /\ ( ( M + N ) - k ) e. NN0 ) -> ( ( B ` ( ( M + N ) - k ) ) =/= 0 -> ( ( M + N ) - k ) <_ N ) ) | 
						
							| 82 | 78 79 81 | syl2an |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( ( B ` ( ( M + N ) - k ) ) =/= 0 -> ( ( M + N ) - k ) <_ N ) ) | 
						
							| 83 | 82 | necon1bd |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( -. ( ( M + N ) - k ) <_ N -> ( B ` ( ( M + N ) - k ) ) = 0 ) ) | 
						
							| 84 | 83 | imp |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. ( ( M + N ) - k ) <_ N ) -> ( B ` ( ( M + N ) - k ) ) = 0 ) | 
						
							| 85 | 77 84 | syldan |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. M <_ k ) -> ( B ` ( ( M + N ) - k ) ) = 0 ) | 
						
							| 86 | 85 | oveq2d |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. M <_ k ) -> ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) = ( ( A ` k ) x. 0 ) ) | 
						
							| 87 | 40 | ad2antrr |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. M <_ k ) -> A : NN0 --> CC ) | 
						
							| 88 | 52 | ad2antlr |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. M <_ k ) -> k e. NN0 ) | 
						
							| 89 | 87 88 | ffvelcdmd |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. M <_ k ) -> ( A ` k ) e. CC ) | 
						
							| 90 | 89 | mul01d |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. M <_ k ) -> ( ( A ` k ) x. 0 ) = 0 ) | 
						
							| 91 | 86 90 | eqtrd |  |-  ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) /\ -. M <_ k ) -> ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) = 0 ) | 
						
							| 92 |  | eldifsni |  |-  ( k e. ( ( 0 ... ( M + N ) ) \ { M } ) -> k =/= M ) | 
						
							| 93 | 92 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> k =/= M ) | 
						
							| 94 | 69 66 | letri3d |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( k = M <-> ( k <_ M /\ M <_ k ) ) ) | 
						
							| 95 | 94 | necon3abid |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( k =/= M <-> -. ( k <_ M /\ M <_ k ) ) ) | 
						
							| 96 | 93 95 | mpbid |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> -. ( k <_ M /\ M <_ k ) ) | 
						
							| 97 |  | ianor |  |-  ( -. ( k <_ M /\ M <_ k ) <-> ( -. k <_ M \/ -. M <_ k ) ) | 
						
							| 98 | 96 97 | sylib |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( -. k <_ M \/ -. M <_ k ) ) | 
						
							| 99 | 65 91 98 | mpjaodan |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) /\ k e. ( ( 0 ... ( M + N ) ) \ { M } ) ) -> ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) = 0 ) | 
						
							| 100 |  | fzfid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( 0 ... ( M + N ) ) e. Fin ) | 
						
							| 101 | 26 48 99 100 | fsumss |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> sum_ k e. { M } ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) ) | 
						
							| 102 | 32 | sumsn |  |-  ( ( M e. NN0 /\ ( ( A ` M ) x. ( B ` ( ( M + N ) - M ) ) ) e. CC ) -> sum_ k e. { M } ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) = ( ( A ` M ) x. ( B ` ( ( M + N ) - M ) ) ) ) | 
						
							| 103 | 15 46 102 | syl2anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> sum_ k e. { M } ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) = ( ( A ` M ) x. ( B ` ( ( M + N ) - M ) ) ) ) | 
						
							| 104 | 103 38 | eqtrd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> sum_ k e. { M } ( ( A ` k ) x. ( B ` ( ( M + N ) - k ) ) ) = ( ( A ` M ) x. ( B ` N ) ) ) | 
						
							| 105 | 12 101 104 | 3eqtr2d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( coeff ` ( F oF x. G ) ) ` ( M + N ) ) = ( ( A ` M ) x. ( B ` N ) ) ) |