Description: Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coep.1 | |- A e. _V |
|
| coep.2 | |- B e. _V |
||
| Assertion | coep | |- ( A ( _E o. R ) B <-> E. x e. B A R x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coep.1 | |- A e. _V |
|
| 2 | coep.2 | |- B e. _V |
|
| 3 | 2 | epeli | |- ( x _E B <-> x e. B ) |
| 4 | 3 | anbi1ci | |- ( ( A R x /\ x _E B ) <-> ( x e. B /\ A R x ) ) |
| 5 | 4 | exbii | |- ( E. x ( A R x /\ x _E B ) <-> E. x ( x e. B /\ A R x ) ) |
| 6 | 1 2 | brco | |- ( A ( _E o. R ) B <-> E. x ( A R x /\ x _E B ) ) |
| 7 | df-rex | |- ( E. x e. B A R x <-> E. x ( x e. B /\ A R x ) ) |
|
| 8 | 5 6 7 | 3bitr4i | |- ( A ( _E o. R ) B <-> E. x e. B A R x ) |