Step |
Hyp |
Ref |
Expression |
1 |
|
relco |
|- Rel ( A o. B ) |
2 |
|
relrn0 |
|- ( Rel ( A o. B ) -> ( ( A o. B ) = (/) <-> ran ( A o. B ) = (/) ) ) |
3 |
1 2
|
ax-mp |
|- ( ( A o. B ) = (/) <-> ran ( A o. B ) = (/) ) |
4 |
|
rnco |
|- ran ( A o. B ) = ran ( A |` ran B ) |
5 |
4
|
eqeq1i |
|- ( ran ( A o. B ) = (/) <-> ran ( A |` ran B ) = (/) ) |
6 |
|
relres |
|- Rel ( A |` ran B ) |
7 |
|
reldm0 |
|- ( Rel ( A |` ran B ) -> ( ( A |` ran B ) = (/) <-> dom ( A |` ran B ) = (/) ) ) |
8 |
6 7
|
ax-mp |
|- ( ( A |` ran B ) = (/) <-> dom ( A |` ran B ) = (/) ) |
9 |
|
relrn0 |
|- ( Rel ( A |` ran B ) -> ( ( A |` ran B ) = (/) <-> ran ( A |` ran B ) = (/) ) ) |
10 |
6 9
|
ax-mp |
|- ( ( A |` ran B ) = (/) <-> ran ( A |` ran B ) = (/) ) |
11 |
|
dmres |
|- dom ( A |` ran B ) = ( ran B i^i dom A ) |
12 |
|
incom |
|- ( ran B i^i dom A ) = ( dom A i^i ran B ) |
13 |
11 12
|
eqtri |
|- dom ( A |` ran B ) = ( dom A i^i ran B ) |
14 |
13
|
eqeq1i |
|- ( dom ( A |` ran B ) = (/) <-> ( dom A i^i ran B ) = (/) ) |
15 |
8 10 14
|
3bitr3i |
|- ( ran ( A |` ran B ) = (/) <-> ( dom A i^i ran B ) = (/) ) |
16 |
3 5 15
|
3bitri |
|- ( ( A o. B ) = (/) <-> ( dom A i^i ran B ) = (/) ) |