| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relco |  |-  Rel ( A o. B ) | 
						
							| 2 |  | relrn0 |  |-  ( Rel ( A o. B ) -> ( ( A o. B ) = (/) <-> ran ( A o. B ) = (/) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( ( A o. B ) = (/) <-> ran ( A o. B ) = (/) ) | 
						
							| 4 |  | rnco |  |-  ran ( A o. B ) = ran ( A |` ran B ) | 
						
							| 5 | 4 | eqeq1i |  |-  ( ran ( A o. B ) = (/) <-> ran ( A |` ran B ) = (/) ) | 
						
							| 6 |  | relres |  |-  Rel ( A |` ran B ) | 
						
							| 7 |  | reldm0 |  |-  ( Rel ( A |` ran B ) -> ( ( A |` ran B ) = (/) <-> dom ( A |` ran B ) = (/) ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( ( A |` ran B ) = (/) <-> dom ( A |` ran B ) = (/) ) | 
						
							| 9 |  | relrn0 |  |-  ( Rel ( A |` ran B ) -> ( ( A |` ran B ) = (/) <-> ran ( A |` ran B ) = (/) ) ) | 
						
							| 10 | 6 9 | ax-mp |  |-  ( ( A |` ran B ) = (/) <-> ran ( A |` ran B ) = (/) ) | 
						
							| 11 |  | dmres |  |-  dom ( A |` ran B ) = ( ran B i^i dom A ) | 
						
							| 12 |  | incom |  |-  ( ran B i^i dom A ) = ( dom A i^i ran B ) | 
						
							| 13 | 11 12 | eqtri |  |-  dom ( A |` ran B ) = ( dom A i^i ran B ) | 
						
							| 14 | 13 | eqeq1i |  |-  ( dom ( A |` ran B ) = (/) <-> ( dom A i^i ran B ) = (/) ) | 
						
							| 15 | 8 10 14 | 3bitr3i |  |-  ( ran ( A |` ran B ) = (/) <-> ( dom A i^i ran B ) = (/) ) | 
						
							| 16 | 3 5 15 | 3bitri |  |-  ( ( A o. B ) = (/) <-> ( dom A i^i ran B ) = (/) ) |