Metamath Proof Explorer


Theorem coeq1

Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997)

Ref Expression
Assertion coeq1
|- ( A = B -> ( A o. C ) = ( B o. C ) )

Proof

Step Hyp Ref Expression
1 coss1
 |-  ( A C_ B -> ( A o. C ) C_ ( B o. C ) )
2 coss1
 |-  ( B C_ A -> ( B o. C ) C_ ( A o. C ) )
3 1 2 anim12i
 |-  ( ( A C_ B /\ B C_ A ) -> ( ( A o. C ) C_ ( B o. C ) /\ ( B o. C ) C_ ( A o. C ) ) )
4 eqss
 |-  ( A = B <-> ( A C_ B /\ B C_ A ) )
5 eqss
 |-  ( ( A o. C ) = ( B o. C ) <-> ( ( A o. C ) C_ ( B o. C ) /\ ( B o. C ) C_ ( A o. C ) ) )
6 3 4 5 3imtr4i
 |-  ( A = B -> ( A o. C ) = ( B o. C ) )