Metamath Proof Explorer


Theorem coeq12d

Description: Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012)

Ref Expression
Hypotheses coeq12d.1
|- ( ph -> A = B )
coeq12d.2
|- ( ph -> C = D )
Assertion coeq12d
|- ( ph -> ( A o. C ) = ( B o. D ) )

Proof

Step Hyp Ref Expression
1 coeq12d.1
 |-  ( ph -> A = B )
2 coeq12d.2
 |-  ( ph -> C = D )
3 1 coeq1d
 |-  ( ph -> ( A o. C ) = ( B o. C ) )
4 2 coeq2d
 |-  ( ph -> ( B o. C ) = ( B o. D ) )
5 3 4 eqtrd
 |-  ( ph -> ( A o. C ) = ( B o. D ) )