Description: Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | coeq12d.1 | |- ( ph -> A = B ) |
|
coeq12d.2 | |- ( ph -> C = D ) |
||
Assertion | coeq12d | |- ( ph -> ( A o. C ) = ( B o. D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq12d.1 | |- ( ph -> A = B ) |
|
2 | coeq12d.2 | |- ( ph -> C = D ) |
|
3 | 1 | coeq1d | |- ( ph -> ( A o. C ) = ( B o. C ) ) |
4 | 2 | coeq2d | |- ( ph -> ( B o. C ) = ( B o. D ) ) |
5 | 3 4 | eqtrd | |- ( ph -> ( A o. C ) = ( B o. D ) ) |