Metamath Proof Explorer


Theorem coeq12i

Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012)

Ref Expression
Hypotheses coeq12i.1
|- A = B
coeq12i.2
|- C = D
Assertion coeq12i
|- ( A o. C ) = ( B o. D )

Proof

Step Hyp Ref Expression
1 coeq12i.1
 |-  A = B
2 coeq12i.2
 |-  C = D
3 1 coeq1i
 |-  ( A o. C ) = ( B o. C )
4 2 coeq2i
 |-  ( B o. C ) = ( B o. D )
5 3 4 eqtri
 |-  ( A o. C ) = ( B o. D )