Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coeq2 | |- ( A = B -> ( C o. A ) = ( C o. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss2 | |- ( A C_ B -> ( C o. A ) C_ ( C o. B ) ) |
|
| 2 | coss2 | |- ( B C_ A -> ( C o. B ) C_ ( C o. A ) ) |
|
| 3 | 1 2 | anim12i | |- ( ( A C_ B /\ B C_ A ) -> ( ( C o. A ) C_ ( C o. B ) /\ ( C o. B ) C_ ( C o. A ) ) ) |
| 4 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
| 5 | eqss | |- ( ( C o. A ) = ( C o. B ) <-> ( ( C o. A ) C_ ( C o. B ) /\ ( C o. B ) C_ ( C o. A ) ) ) |
|
| 6 | 3 4 5 | 3imtr4i | |- ( A = B -> ( C o. A ) = ( C o. B ) ) |