Metamath Proof Explorer


Theorem coeq2

Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997)

Ref Expression
Assertion coeq2
|- ( A = B -> ( C o. A ) = ( C o. B ) )

Proof

Step Hyp Ref Expression
1 coss2
 |-  ( A C_ B -> ( C o. A ) C_ ( C o. B ) )
2 coss2
 |-  ( B C_ A -> ( C o. B ) C_ ( C o. A ) )
3 1 2 anim12i
 |-  ( ( A C_ B /\ B C_ A ) -> ( ( C o. A ) C_ ( C o. B ) /\ ( C o. B ) C_ ( C o. A ) ) )
4 eqss
 |-  ( A = B <-> ( A C_ B /\ B C_ A ) )
5 eqss
 |-  ( ( C o. A ) = ( C o. B ) <-> ( ( C o. A ) C_ ( C o. B ) /\ ( C o. B ) C_ ( C o. A ) ) )
6 3 4 5 3imtr4i
 |-  ( A = B -> ( C o. A ) = ( C o. B ) )