Step |
Hyp |
Ref |
Expression |
1 |
|
coesub.1 |
|- A = ( coeff ` F ) |
2 |
|
coesub.2 |
|- B = ( coeff ` G ) |
3 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
4 |
|
simpl |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> F e. ( Poly ` S ) ) |
5 |
3 4
|
sselid |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> F e. ( Poly ` CC ) ) |
6 |
|
ssid |
|- CC C_ CC |
7 |
|
neg1cn |
|- -u 1 e. CC |
8 |
|
plyconst |
|- ( ( CC C_ CC /\ -u 1 e. CC ) -> ( CC X. { -u 1 } ) e. ( Poly ` CC ) ) |
9 |
6 7 8
|
mp2an |
|- ( CC X. { -u 1 } ) e. ( Poly ` CC ) |
10 |
|
simpr |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> G e. ( Poly ` S ) ) |
11 |
3 10
|
sselid |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> G e. ( Poly ` CC ) ) |
12 |
|
plymulcl |
|- ( ( ( CC X. { -u 1 } ) e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) ) -> ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` CC ) ) |
13 |
9 11 12
|
sylancr |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` CC ) ) |
14 |
|
eqid |
|- ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) = ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) |
15 |
1 14
|
coeadd |
|- ( ( F e. ( Poly ` CC ) /\ ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` CC ) ) -> ( coeff ` ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) ) = ( A oF + ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) ) ) |
16 |
5 13 15
|
syl2anc |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) ) = ( A oF + ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) ) ) |
17 |
|
coemulc |
|- ( ( -u 1 e. CC /\ G e. ( Poly ` CC ) ) -> ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) = ( ( NN0 X. { -u 1 } ) oF x. ( coeff ` G ) ) ) |
18 |
7 11 17
|
sylancr |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) = ( ( NN0 X. { -u 1 } ) oF x. ( coeff ` G ) ) ) |
19 |
2
|
oveq2i |
|- ( ( NN0 X. { -u 1 } ) oF x. B ) = ( ( NN0 X. { -u 1 } ) oF x. ( coeff ` G ) ) |
20 |
18 19
|
eqtr4di |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) = ( ( NN0 X. { -u 1 } ) oF x. B ) ) |
21 |
20
|
oveq2d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( A oF + ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) ) = ( A oF + ( ( NN0 X. { -u 1 } ) oF x. B ) ) ) |
22 |
16 21
|
eqtrd |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) ) = ( A oF + ( ( NN0 X. { -u 1 } ) oF x. B ) ) ) |
23 |
|
cnex |
|- CC e. _V |
24 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
25 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
26 |
|
ofnegsub |
|- ( ( CC e. _V /\ F : CC --> CC /\ G : CC --> CC ) -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
27 |
23 24 25 26
|
mp3an3an |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
28 |
27
|
fveq2d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) ) = ( coeff ` ( F oF - G ) ) ) |
29 |
|
nn0ex |
|- NN0 e. _V |
30 |
1
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
31 |
2
|
coef3 |
|- ( G e. ( Poly ` S ) -> B : NN0 --> CC ) |
32 |
|
ofnegsub |
|- ( ( NN0 e. _V /\ A : NN0 --> CC /\ B : NN0 --> CC ) -> ( A oF + ( ( NN0 X. { -u 1 } ) oF x. B ) ) = ( A oF - B ) ) |
33 |
29 30 31 32
|
mp3an3an |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( A oF + ( ( NN0 X. { -u 1 } ) oF x. B ) ) = ( A oF - B ) ) |
34 |
22 28 33
|
3eqtr3d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( F oF - G ) ) = ( A oF - B ) ) |