Metamath Proof Explorer


Theorem coeval

Description: Value of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion coeval
|- ( F e. ( Poly ` S ) -> ( coeff ` F ) = ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 plyssc
 |-  ( Poly ` S ) C_ ( Poly ` CC )
2 1 sseli
 |-  ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) )
3 eqeq1
 |-  ( f = F -> ( f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) <-> F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) )
4 3 anbi2d
 |-  ( f = F -> ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) )
5 4 rexbidv
 |-  ( f = F -> ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) )
6 5 riotabidv
 |-  ( f = F -> ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) = ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) )
7 df-coe
 |-  coeff = ( f e. ( Poly ` CC ) |-> ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) )
8 riotaex
 |-  ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) e. _V
9 6 7 8 fvmpt
 |-  ( F e. ( Poly ` CC ) -> ( coeff ` F ) = ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) )
10 2 9 syl
 |-  ( F e. ( Poly ` S ) -> ( coeff ` F ) = ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) )