Step |
Hyp |
Ref |
Expression |
1 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
2 |
1
|
sseli |
|- ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) |
3 |
|
eqeq1 |
|- ( f = F -> ( f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) <-> F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
4 |
3
|
anbi2d |
|- ( f = F -> ( ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |
5 |
4
|
rexbidv |
|- ( f = F -> ( E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) <-> E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |
6 |
5
|
riotabidv |
|- ( f = F -> ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) = ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |
7 |
|
df-coe |
|- coeff = ( f e. ( Poly ` CC ) |-> ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |
8 |
|
riotaex |
|- ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) e. _V |
9 |
6 7 8
|
fvmpt |
|- ( F e. ( Poly ` CC ) -> ( coeff ` F ) = ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |
10 |
2 9
|
syl |
|- ( F e. ( Poly ` S ) -> ( coeff ` F ) = ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |