Metamath Proof Explorer


Theorem coex

Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003)

Ref Expression
Hypotheses coex.1
|- A e. _V
coex.2
|- B e. _V
Assertion coex
|- ( A o. B ) e. _V

Proof

Step Hyp Ref Expression
1 coex.1
 |-  A e. _V
2 coex.2
 |-  B e. _V
3 coexg
 |-  ( ( A e. _V /\ B e. _V ) -> ( A o. B ) e. _V )
4 1 2 3 mp2an
 |-  ( A o. B ) e. _V