Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | coexg | |- ( ( A e. V /\ B e. W ) -> ( A o. B ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossxp | |- ( A o. B ) C_ ( dom B X. ran A ) |
|
2 | dmexg | |- ( B e. W -> dom B e. _V ) |
|
3 | rnexg | |- ( A e. V -> ran A e. _V ) |
|
4 | xpexg | |- ( ( dom B e. _V /\ ran A e. _V ) -> ( dom B X. ran A ) e. _V ) |
|
5 | 2 3 4 | syl2anr | |- ( ( A e. V /\ B e. W ) -> ( dom B X. ran A ) e. _V ) |
6 | ssexg | |- ( ( ( A o. B ) C_ ( dom B X. ran A ) /\ ( dom B X. ran A ) e. _V ) -> ( A o. B ) e. _V ) |
|
7 | 1 5 6 | sylancr | |- ( ( A e. V /\ B e. W ) -> ( A o. B ) e. _V ) |