Metamath Proof Explorer


Theorem coexg

Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998)

Ref Expression
Assertion coexg
|- ( ( A e. V /\ B e. W ) -> ( A o. B ) e. _V )

Proof

Step Hyp Ref Expression
1 cossxp
 |-  ( A o. B ) C_ ( dom B X. ran A )
2 dmexg
 |-  ( B e. W -> dom B e. _V )
3 rnexg
 |-  ( A e. V -> ran A e. _V )
4 xpexg
 |-  ( ( dom B e. _V /\ ran A e. _V ) -> ( dom B X. ran A ) e. _V )
5 2 3 4 syl2anr
 |-  ( ( A e. V /\ B e. W ) -> ( dom B X. ran A ) e. _V )
6 ssexg
 |-  ( ( ( A o. B ) C_ ( dom B X. ran A ) /\ ( dom B X. ran A ) e. _V ) -> ( A o. B ) e. _V )
7 1 5 6 sylancr
 |-  ( ( A e. V /\ B e. W ) -> ( A o. B ) e. _V )