| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3l |
|- ( ( A < C < |
| 2 |
|
simp3r |
|- ( ( A < { ( A |s B ) } < |
| 3 |
|
simp1 |
|- ( ( A < A < |
| 4 |
|
scutbday |
|- ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { t e. No | ( A < |
| 5 |
3 4
|
syl |
|- ( ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { t e. No | ( A < |
| 6 |
|
ssltex1 |
|- ( A < A e. _V ) |
| 7 |
3 6
|
syl |
|- ( ( A < A e. _V ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( ( A < A e. _V ) |
| 9 |
|
ssltss1 |
|- ( A < A C_ No ) |
| 10 |
3 9
|
syl |
|- ( ( A < A C_ No ) |
| 11 |
10
|
ad2antrr |
|- ( ( ( ( A < A C_ No ) |
| 12 |
8 11
|
elpwd |
|- ( ( ( ( A < A e. ~P No ) |
| 13 |
|
simpl2l |
|- ( ( ( A < A. x e. A E. y e. C x <_s y ) |
| 14 |
13
|
adantr |
|- ( ( ( ( A < A. x e. A E. y e. C x <_s y ) |
| 15 |
|
simpr |
|- ( ( ( ( A < C < |
| 16 |
|
cofsslt |
|- ( ( A e. ~P No /\ A. x e. A E. y e. C x <_s y /\ C < A < |
| 17 |
12 14 15 16
|
syl3anc |
|- ( ( ( ( A < A < |
| 18 |
17
|
ex |
|- ( ( ( A < ( C < A < |
| 19 |
|
ssltex2 |
|- ( A < B e. _V ) |
| 20 |
3 19
|
syl |
|- ( ( A < B e. _V ) |
| 21 |
20
|
ad2antrr |
|- ( ( ( ( A < B e. _V ) |
| 22 |
|
ssltss2 |
|- ( A < B C_ No ) |
| 23 |
3 22
|
syl |
|- ( ( A < B C_ No ) |
| 24 |
23
|
ad2antrr |
|- ( ( ( ( A < B C_ No ) |
| 25 |
21 24
|
elpwd |
|- ( ( ( ( A < B e. ~P No ) |
| 26 |
|
simpl2r |
|- ( ( ( A < A. z e. B E. w e. D w <_s z ) |
| 27 |
26
|
adantr |
|- ( ( ( ( A < A. z e. B E. w e. D w <_s z ) |
| 28 |
|
simpr |
|- ( ( ( ( A < { t } < |
| 29 |
|
coinitsslt |
|- ( ( B e. ~P No /\ A. z e. B E. w e. D w <_s z /\ { t } < { t } < |
| 30 |
25 27 28 29
|
syl3anc |
|- ( ( ( ( A < { t } < |
| 31 |
30
|
ex |
|- ( ( ( A < ( { t } < { t } < |
| 32 |
18 31
|
anim12d |
|- ( ( ( A < ( ( C < ( A < |
| 33 |
32
|
ss2rabdv |
|- ( ( A < { t e. No | ( C < |
| 34 |
|
imass2 |
|- ( { t e. No | ( C < ( bday " { t e. No | ( C < |
| 35 |
|
intss |
|- ( ( bday " { t e. No | ( C < |^| ( bday " { t e. No | ( A < |
| 36 |
33 34 35
|
3syl |
|- ( ( A < |^| ( bday " { t e. No | ( A < |
| 37 |
5 36
|
eqsstrd |
|- ( ( A < ( bday ` ( A |s B ) ) C_ |^| ( bday " { t e. No | ( C < |
| 38 |
|
bdayfn |
|- bday Fn No |
| 39 |
|
ssrab2 |
|- { t e. No | ( C < |
| 40 |
|
sneq |
|- ( t = ( A |s B ) -> { t } = { ( A |s B ) } ) |
| 41 |
40
|
breq2d |
|- ( t = ( A |s B ) -> ( C < C < |
| 42 |
40
|
breq1d |
|- ( t = ( A |s B ) -> ( { t } < { ( A |s B ) } < |
| 43 |
41 42
|
anbi12d |
|- ( t = ( A |s B ) -> ( ( C < ( C < |
| 44 |
3
|
scutcld |
|- ( ( A < ( A |s B ) e. No ) |
| 45 |
|
simp3 |
|- ( ( A < ( C < |
| 46 |
43 44 45
|
elrabd |
|- ( ( A < ( A |s B ) e. { t e. No | ( C < |
| 47 |
|
fnfvima |
|- ( ( bday Fn No /\ { t e. No | ( C < ( bday ` ( A |s B ) ) e. ( bday " { t e. No | ( C < |
| 48 |
38 39 46 47
|
mp3an12i |
|- ( ( A < ( bday ` ( A |s B ) ) e. ( bday " { t e. No | ( C < |
| 49 |
|
intss1 |
|- ( ( bday ` ( A |s B ) ) e. ( bday " { t e. No | ( C < |^| ( bday " { t e. No | ( C < |
| 50 |
48 49
|
syl |
|- ( ( A < |^| ( bday " { t e. No | ( C < |
| 51 |
37 50
|
eqssd |
|- ( ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { t e. No | ( C < |
| 52 |
|
ovex |
|- ( A |s B ) e. _V |
| 53 |
52
|
snnz |
|- { ( A |s B ) } =/= (/) |
| 54 |
|
sslttr |
|- ( ( C < C < |
| 55 |
53 54
|
mp3an3 |
|- ( ( C < C < |
| 56 |
55
|
3ad2ant3 |
|- ( ( A < C < |
| 57 |
|
eqscut |
|- ( ( C < ( ( C |s D ) = ( A |s B ) <-> ( C < |
| 58 |
56 44 57
|
syl2anc |
|- ( ( A < ( ( C |s D ) = ( A |s B ) <-> ( C < |
| 59 |
1 2 51 58
|
mpbir3and |
|- ( ( A < ( C |s D ) = ( A |s B ) ) |
| 60 |
59
|
eqcomd |
|- ( ( A < ( A |s B ) = ( C |s D ) ) |