Metamath Proof Explorer


Theorem cofcut2d

Description: If A and C are mutually cofinal and B and D are mutually coinitial, then the cut of A and B is equal to the cut of C and D . Theorem 2.7 of Gonshor p. 10. (Contributed by Scott Fenton, 23-Jan-2025)

Ref Expression
Hypotheses cofcut2d.1
|- ( ph -> A <
cofcut2d.2
|- ( ph -> C e. ~P No )
cofcut2d.3
|- ( ph -> D e. ~P No )
cofcut2d.4
|- ( ph -> A. x e. A E. y e. C x <_s y )
cofcut2d.5
|- ( ph -> A. z e. B E. w e. D w <_s z )
cofcut2d.6
|- ( ph -> A. t e. C E. u e. A t <_s u )
cofcut2d.7
|- ( ph -> A. r e. D E. s e. B s <_s r )
Assertion cofcut2d
|- ( ph -> ( A |s B ) = ( C |s D ) )

Proof

Step Hyp Ref Expression
1 cofcut2d.1
 |-  ( ph -> A <
2 cofcut2d.2
 |-  ( ph -> C e. ~P No )
3 cofcut2d.3
 |-  ( ph -> D e. ~P No )
4 cofcut2d.4
 |-  ( ph -> A. x e. A E. y e. C x <_s y )
5 cofcut2d.5
 |-  ( ph -> A. z e. B E. w e. D w <_s z )
6 cofcut2d.6
 |-  ( ph -> A. t e. C E. u e. A t <_s u )
7 cofcut2d.7
 |-  ( ph -> A. r e. D E. s e. B s <_s r )
8 cofcut2
 |-  ( ( ( A < ( A |s B ) = ( C |s D ) )
9 1 2 3 4 5 6 7 8 syl322anc
 |-  ( ph -> ( A |s B ) = ( C |s D ) )