| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bdayelon |
|- ( bday ` ( A |s B ) ) e. On |
| 2 |
1
|
onssneli |
|- ( ( bday ` ( A |s B ) ) C_ ( bday ` x ) -> -. ( bday ` x ) e. ( bday ` ( A |s B ) ) ) |
| 3 |
|
leftssold |
|- ( _Left ` X ) C_ ( _Old ` ( bday ` X ) ) |
| 4 |
3
|
a1i |
|- ( ( A < ( _Left ` X ) C_ ( _Old ` ( bday ` X ) ) ) |
| 5 |
4
|
sselda |
|- ( ( ( A < x e. ( _Old ` ( bday ` X ) ) ) |
| 6 |
|
bdayelon |
|- ( bday ` X ) e. On |
| 7 |
|
leftssno |
|- ( _Left ` X ) C_ No |
| 8 |
7
|
a1i |
|- ( ( A < ( _Left ` X ) C_ No ) |
| 9 |
8
|
sselda |
|- ( ( ( A < x e. No ) |
| 10 |
|
oldbday |
|- ( ( ( bday ` X ) e. On /\ x e. No ) -> ( x e. ( _Old ` ( bday ` X ) ) <-> ( bday ` x ) e. ( bday ` X ) ) ) |
| 11 |
6 9 10
|
sylancr |
|- ( ( ( A < ( x e. ( _Old ` ( bday ` X ) ) <-> ( bday ` x ) e. ( bday ` X ) ) ) |
| 12 |
5 11
|
mpbid |
|- ( ( ( A < ( bday ` x ) e. ( bday ` X ) ) |
| 13 |
|
simplr |
|- ( ( ( A < X = ( A |s B ) ) |
| 14 |
13
|
fveq2d |
|- ( ( ( A < ( bday ` X ) = ( bday ` ( A |s B ) ) ) |
| 15 |
12 14
|
eleqtrd |
|- ( ( ( A < ( bday ` x ) e. ( bday ` ( A |s B ) ) ) |
| 16 |
2 15
|
nsyl3 |
|- ( ( ( A < -. ( bday ` ( A |s B ) ) C_ ( bday ` x ) ) |
| 17 |
|
scutbday |
|- ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { t e. No | ( A < |
| 18 |
17
|
ad3antrrr |
|- ( ( ( ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { t e. No | ( A < |
| 19 |
|
bdayfn |
|- bday Fn No |
| 20 |
|
ssrab2 |
|- { t e. No | ( A < |
| 21 |
|
sneq |
|- ( t = x -> { t } = { x } ) |
| 22 |
21
|
breq2d |
|- ( t = x -> ( A < A < |
| 23 |
21
|
breq1d |
|- ( t = x -> ( { t } < { x } < |
| 24 |
22 23
|
anbi12d |
|- ( t = x -> ( ( A < ( A < |
| 25 |
9
|
adantr |
|- ( ( ( ( A < x e. No ) |
| 26 |
|
vsnex |
|- { x } e. _V |
| 27 |
26
|
a1i |
|- ( ( ( A < { x } e. _V ) |
| 28 |
|
ssltex2 |
|- ( A < B e. _V ) |
| 29 |
28
|
ad2antrr |
|- ( ( ( A < B e. _V ) |
| 30 |
9
|
snssd |
|- ( ( ( A < { x } C_ No ) |
| 31 |
|
ssltss2 |
|- ( A < B C_ No ) |
| 32 |
31
|
ad2antrr |
|- ( ( ( A < B C_ No ) |
| 33 |
9
|
adantr |
|- ( ( ( ( A < x e. No ) |
| 34 |
|
simpr |
|- ( ( A < X = ( A |s B ) ) |
| 35 |
|
simpl |
|- ( ( A < A < |
| 36 |
35
|
scutcld |
|- ( ( A < ( A |s B ) e. No ) |
| 37 |
34 36
|
eqeltrd |
|- ( ( A < X e. No ) |
| 38 |
37
|
ad2antrr |
|- ( ( ( ( A < X e. No ) |
| 39 |
32
|
sselda |
|- ( ( ( ( A < b e. No ) |
| 40 |
|
leftval |
|- ( _Left ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x |
| 41 |
40
|
a1i |
|- ( ( A < ( _Left ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x |
| 42 |
41
|
eleq2d |
|- ( ( A < ( x e. ( _Left ` X ) <-> x e. { x e. ( _Old ` ( bday ` X ) ) | x |
| 43 |
|
rabid |
|- ( x e. { x e. ( _Old ` ( bday ` X ) ) | x ( x e. ( _Old ` ( bday ` X ) ) /\ x |
| 44 |
42 43
|
bitrdi |
|- ( ( A < ( x e. ( _Left ` X ) <-> ( x e. ( _Old ` ( bday ` X ) ) /\ x |
| 45 |
44
|
simplbda |
|- ( ( ( A < x |
| 46 |
45
|
adantr |
|- ( ( ( ( A < x |
| 47 |
|
simpllr |
|- ( ( ( ( A < X = ( A |s B ) ) |
| 48 |
|
scutcut |
|- ( A < ( ( A |s B ) e. No /\ A < |
| 49 |
48
|
ad2antrr |
|- ( ( ( A < ( ( A |s B ) e. No /\ A < |
| 50 |
49
|
simp3d |
|- ( ( ( A < { ( A |s B ) } < |
| 51 |
|
ovex |
|- ( A |s B ) e. _V |
| 52 |
51
|
snid |
|- ( A |s B ) e. { ( A |s B ) } |
| 53 |
|
ssltsepc |
|- ( ( { ( A |s B ) } < ( A |s B ) |
| 54 |
52 53
|
mp3an2 |
|- ( ( { ( A |s B ) } < ( A |s B ) |
| 55 |
50 54
|
sylan |
|- ( ( ( ( A < ( A |s B ) |
| 56 |
47 55
|
eqbrtrd |
|- ( ( ( ( A < X |
| 57 |
33 38 39 46 56
|
slttrd |
|- ( ( ( ( A < x |
| 58 |
57
|
3adant2 |
|- ( ( ( ( A < x |
| 59 |
|
velsn |
|- ( a e. { x } <-> a = x ) |
| 60 |
|
breq1 |
|- ( a = x -> ( a x |
| 61 |
59 60
|
sylbi |
|- ( a e. { x } -> ( a x |
| 62 |
61
|
3ad2ant2 |
|- ( ( ( ( A < ( a x |
| 63 |
58 62
|
mpbird |
|- ( ( ( ( A < a |
| 64 |
27 29 30 32 63
|
ssltd |
|- ( ( ( A < { x } < |
| 65 |
64
|
anim1ci |
|- ( ( ( ( A < ( A < |
| 66 |
24 25 65
|
elrabd |
|- ( ( ( ( A < x e. { t e. No | ( A < |
| 67 |
|
fnfvima |
|- ( ( bday Fn No /\ { t e. No | ( A < ( bday ` x ) e. ( bday " { t e. No | ( A < |
| 68 |
19 20 66 67
|
mp3an12i |
|- ( ( ( ( A < ( bday ` x ) e. ( bday " { t e. No | ( A < |
| 69 |
|
intss1 |
|- ( ( bday ` x ) e. ( bday " { t e. No | ( A < |^| ( bday " { t e. No | ( A < |
| 70 |
68 69
|
syl |
|- ( ( ( ( A < |^| ( bday " { t e. No | ( A < |
| 71 |
18 70
|
eqsstrd |
|- ( ( ( ( A < ( bday ` ( A |s B ) ) C_ ( bday ` x ) ) |
| 72 |
16 71
|
mtand |
|- ( ( ( A < -. A < |
| 73 |
|
ssltex1 |
|- ( A < A e. _V ) |
| 74 |
73
|
ad3antrrr |
|- ( ( ( ( A < A e. _V ) |
| 75 |
74 26
|
jctir |
|- ( ( ( ( A < ( A e. _V /\ { x } e. _V ) ) |
| 76 |
|
ssltss1 |
|- ( A < A C_ No ) |
| 77 |
76
|
ad3antrrr |
|- ( ( ( ( A < A C_ No ) |
| 78 |
9
|
adantr |
|- ( ( ( ( A < x e. No ) |
| 79 |
78
|
snssd |
|- ( ( ( ( A < { x } C_ No ) |
| 80 |
|
simpr |
|- ( ( ( ( A < A. y e. A A. t e. { x } y |
| 81 |
77 79 80
|
3jca |
|- ( ( ( ( A < ( A C_ No /\ { x } C_ No /\ A. y e. A A. t e. { x } y |
| 82 |
|
brsslt |
|- ( A < ( ( A e. _V /\ { x } e. _V ) /\ ( A C_ No /\ { x } C_ No /\ A. y e. A A. t e. { x } y |
| 83 |
75 81 82
|
sylanbrc |
|- ( ( ( ( A < A < |
| 84 |
72 83
|
mtand |
|- ( ( ( A < -. A. y e. A A. t e. { x } y |
| 85 |
|
rexnal |
|- ( E. t e. { x } -. A. y e. A y -. A. t e. { x } A. y e. A y |
| 86 |
|
ralcom |
|- ( A. t e. { x } A. y e. A y A. y e. A A. t e. { x } y |
| 87 |
85 86
|
xchbinx |
|- ( E. t e. { x } -. A. y e. A y -. A. y e. A A. t e. { x } y |
| 88 |
84 87
|
sylibr |
|- ( ( ( A < E. t e. { x } -. A. y e. A y |
| 89 |
|
vex |
|- x e. _V |
| 90 |
|
breq2 |
|- ( t = x -> ( y y |
| 91 |
90
|
ralbidv |
|- ( t = x -> ( A. y e. A y A. y e. A y |
| 92 |
91
|
notbid |
|- ( t = x -> ( -. A. y e. A y -. A. y e. A y |
| 93 |
89 92
|
rexsn |
|- ( E. t e. { x } -. A. y e. A y -. A. y e. A y |
| 94 |
88 93
|
sylib |
|- ( ( ( A < -. A. y e. A y |
| 95 |
76
|
ad2antrr |
|- ( ( ( A < A C_ No ) |
| 96 |
95
|
sselda |
|- ( ( ( ( A < y e. No ) |
| 97 |
|
slenlt |
|- ( ( x e. No /\ y e. No ) -> ( x <_s y <-> -. y |
| 98 |
9 96 97
|
syl2an2r |
|- ( ( ( ( A < ( x <_s y <-> -. y |
| 99 |
98
|
rexbidva |
|- ( ( ( A < ( E. y e. A x <_s y <-> E. y e. A -. y |
| 100 |
|
rexnal |
|- ( E. y e. A -. y -. A. y e. A y |
| 101 |
99 100
|
bitrdi |
|- ( ( ( A < ( E. y e. A x <_s y <-> -. A. y e. A y |
| 102 |
94 101
|
mpbird |
|- ( ( ( A < E. y e. A x <_s y ) |
| 103 |
102
|
ralrimiva |
|- ( ( A < A. x e. ( _Left ` X ) E. y e. A x <_s y ) |
| 104 |
1
|
onssneli |
|- ( ( bday ` ( A |s B ) ) C_ ( bday ` z ) -> -. ( bday ` z ) e. ( bday ` ( A |s B ) ) ) |
| 105 |
|
rightssold |
|- ( _Right ` X ) C_ ( _Old ` ( bday ` X ) ) |
| 106 |
105
|
a1i |
|- ( ( A < ( _Right ` X ) C_ ( _Old ` ( bday ` X ) ) ) |
| 107 |
106
|
sselda |
|- ( ( ( A < z e. ( _Old ` ( bday ` X ) ) ) |
| 108 |
|
rightssno |
|- ( _Right ` X ) C_ No |
| 109 |
108
|
a1i |
|- ( ( A < ( _Right ` X ) C_ No ) |
| 110 |
109
|
sselda |
|- ( ( ( A < z e. No ) |
| 111 |
|
oldbday |
|- ( ( ( bday ` X ) e. On /\ z e. No ) -> ( z e. ( _Old ` ( bday ` X ) ) <-> ( bday ` z ) e. ( bday ` X ) ) ) |
| 112 |
6 110 111
|
sylancr |
|- ( ( ( A < ( z e. ( _Old ` ( bday ` X ) ) <-> ( bday ` z ) e. ( bday ` X ) ) ) |
| 113 |
107 112
|
mpbid |
|- ( ( ( A < ( bday ` z ) e. ( bday ` X ) ) |
| 114 |
|
simplr |
|- ( ( ( A < X = ( A |s B ) ) |
| 115 |
114
|
fveq2d |
|- ( ( ( A < ( bday ` X ) = ( bday ` ( A |s B ) ) ) |
| 116 |
113 115
|
eleqtrd |
|- ( ( ( A < ( bday ` z ) e. ( bday ` ( A |s B ) ) ) |
| 117 |
104 116
|
nsyl3 |
|- ( ( ( A < -. ( bday ` ( A |s B ) ) C_ ( bday ` z ) ) |
| 118 |
17
|
ad3antrrr |
|- ( ( ( ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { t e. No | ( A < |
| 119 |
|
sneq |
|- ( t = z -> { t } = { z } ) |
| 120 |
119
|
breq2d |
|- ( t = z -> ( A < A < |
| 121 |
119
|
breq1d |
|- ( t = z -> ( { t } < { z } < |
| 122 |
120 121
|
anbi12d |
|- ( t = z -> ( ( A < ( A < |
| 123 |
110
|
adantr |
|- ( ( ( ( A < z e. No ) |
| 124 |
73
|
ad2antrr |
|- ( ( ( A < A e. _V ) |
| 125 |
|
vsnex |
|- { z } e. _V |
| 126 |
125
|
a1i |
|- ( ( ( A < { z } e. _V ) |
| 127 |
76
|
ad2antrr |
|- ( ( ( A < A C_ No ) |
| 128 |
110
|
snssd |
|- ( ( ( A < { z } C_ No ) |
| 129 |
127
|
sselda |
|- ( ( ( ( A < a e. No ) |
| 130 |
37
|
ad2antrr |
|- ( ( ( ( A < X e. No ) |
| 131 |
110
|
adantr |
|- ( ( ( ( A < z e. No ) |
| 132 |
48
|
ad2antrr |
|- ( ( ( A < ( ( A |s B ) e. No /\ A < |
| 133 |
132
|
simp2d |
|- ( ( ( A < A < |
| 134 |
|
ssltsepc |
|- ( ( A < a |
| 135 |
52 134
|
mp3an3 |
|- ( ( A < a |
| 136 |
133 135
|
sylan |
|- ( ( ( ( A < a |
| 137 |
|
simpllr |
|- ( ( ( ( A < X = ( A |s B ) ) |
| 138 |
136 137
|
breqtrrd |
|- ( ( ( ( A < a |
| 139 |
|
rightval |
|- ( _Right ` X ) = { z e. ( _Old ` ( bday ` X ) ) | X |
| 140 |
139
|
a1i |
|- ( ( A < ( _Right ` X ) = { z e. ( _Old ` ( bday ` X ) ) | X |
| 141 |
140
|
eleq2d |
|- ( ( A < ( z e. ( _Right ` X ) <-> z e. { z e. ( _Old ` ( bday ` X ) ) | X |
| 142 |
|
rabid |
|- ( z e. { z e. ( _Old ` ( bday ` X ) ) | X ( z e. ( _Old ` ( bday ` X ) ) /\ X |
| 143 |
141 142
|
bitrdi |
|- ( ( A < ( z e. ( _Right ` X ) <-> ( z e. ( _Old ` ( bday ` X ) ) /\ X |
| 144 |
143
|
simplbda |
|- ( ( ( A < X |
| 145 |
144
|
adantr |
|- ( ( ( ( A < X |
| 146 |
129 130 131 138 145
|
slttrd |
|- ( ( ( ( A < a |
| 147 |
146
|
3adant3 |
|- ( ( ( ( A < a |
| 148 |
|
velsn |
|- ( b e. { z } <-> b = z ) |
| 149 |
|
breq2 |
|- ( b = z -> ( a a |
| 150 |
148 149
|
sylbi |
|- ( b e. { z } -> ( a a |
| 151 |
150
|
3ad2ant3 |
|- ( ( ( ( A < ( a a |
| 152 |
147 151
|
mpbird |
|- ( ( ( ( A < a |
| 153 |
124 126 127 128 152
|
ssltd |
|- ( ( ( A < A < |
| 154 |
153
|
anim1i |
|- ( ( ( ( A < ( A < |
| 155 |
122 123 154
|
elrabd |
|- ( ( ( ( A < z e. { t e. No | ( A < |
| 156 |
|
fnfvima |
|- ( ( bday Fn No /\ { t e. No | ( A < ( bday ` z ) e. ( bday " { t e. No | ( A < |
| 157 |
19 20 155 156
|
mp3an12i |
|- ( ( ( ( A < ( bday ` z ) e. ( bday " { t e. No | ( A < |
| 158 |
|
intss1 |
|- ( ( bday ` z ) e. ( bday " { t e. No | ( A < |^| ( bday " { t e. No | ( A < |
| 159 |
157 158
|
syl |
|- ( ( ( ( A < |^| ( bday " { t e. No | ( A < |
| 160 |
118 159
|
eqsstrd |
|- ( ( ( ( A < ( bday ` ( A |s B ) ) C_ ( bday ` z ) ) |
| 161 |
117 160
|
mtand |
|- ( ( ( A < -. { z } < |
| 162 |
28
|
ad3antrrr |
|- ( ( ( ( A < B e. _V ) |
| 163 |
162 125
|
jctil |
|- ( ( ( ( A < ( { z } e. _V /\ B e. _V ) ) |
| 164 |
128
|
adantr |
|- ( ( ( ( A < { z } C_ No ) |
| 165 |
31
|
ad3antrrr |
|- ( ( ( ( A < B C_ No ) |
| 166 |
|
simpr |
|- ( ( ( ( A < A. t e. { z } A. w e. B t |
| 167 |
164 165 166
|
3jca |
|- ( ( ( ( A < ( { z } C_ No /\ B C_ No /\ A. t e. { z } A. w e. B t |
| 168 |
|
brsslt |
|- ( { z } < ( ( { z } e. _V /\ B e. _V ) /\ ( { z } C_ No /\ B C_ No /\ A. t e. { z } A. w e. B t |
| 169 |
163 167 168
|
sylanbrc |
|- ( ( ( ( A < { z } < |
| 170 |
161 169
|
mtand |
|- ( ( ( A < -. A. t e. { z } A. w e. B t |
| 171 |
|
rexnal |
|- ( E. t e. { z } -. A. w e. B t -. A. t e. { z } A. w e. B t |
| 172 |
170 171
|
sylibr |
|- ( ( ( A < E. t e. { z } -. A. w e. B t |
| 173 |
|
vex |
|- z e. _V |
| 174 |
|
breq1 |
|- ( t = z -> ( t z |
| 175 |
174
|
ralbidv |
|- ( t = z -> ( A. w e. B t A. w e. B z |
| 176 |
175
|
notbid |
|- ( t = z -> ( -. A. w e. B t -. A. w e. B z |
| 177 |
173 176
|
rexsn |
|- ( E. t e. { z } -. A. w e. B t -. A. w e. B z |
| 178 |
172 177
|
sylib |
|- ( ( ( A < -. A. w e. B z |
| 179 |
31
|
ad2antrr |
|- ( ( ( A < B C_ No ) |
| 180 |
179
|
sselda |
|- ( ( ( ( A < w e. No ) |
| 181 |
110
|
adantr |
|- ( ( ( ( A < z e. No ) |
| 182 |
|
slenlt |
|- ( ( w e. No /\ z e. No ) -> ( w <_s z <-> -. z |
| 183 |
180 181 182
|
syl2anc |
|- ( ( ( ( A < ( w <_s z <-> -. z |
| 184 |
183
|
rexbidva |
|- ( ( ( A < ( E. w e. B w <_s z <-> E. w e. B -. z |
| 185 |
|
rexnal |
|- ( E. w e. B -. z -. A. w e. B z |
| 186 |
184 185
|
bitrdi |
|- ( ( ( A < ( E. w e. B w <_s z <-> -. A. w e. B z |
| 187 |
178 186
|
mpbird |
|- ( ( ( A < E. w e. B w <_s z ) |
| 188 |
187
|
ralrimiva |
|- ( ( A < A. z e. ( _Right ` X ) E. w e. B w <_s z ) |
| 189 |
103 188
|
jca |
|- ( ( A < ( A. x e. ( _Left ` X ) E. y e. A x <_s y /\ A. z e. ( _Right ` X ) E. w e. B w <_s z ) ) |