Description: If X is the cut of A and B , then B is coinitial with ( _RightX ) . Second half of theorem 2.9 of Gonshor p. 12. (Contributed by Scott Fenton, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofcutrd.1 | |- ( ph -> A < |
|
| cofcutrd.2 | |- ( ph -> X = ( A |s B ) ) |
||
| Assertion | cofcutr2d | |- ( ph -> A. z e. ( _Right ` X ) E. w e. B w <_s z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofcutrd.1 | |- ( ph -> A < |
|
| 2 | cofcutrd.2 | |- ( ph -> X = ( A |s B ) ) |
|
| 3 | cofcutr | |- ( ( A < |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A. x e. ( _Left ` X ) E. y e. A x <_s y /\ A. z e. ( _Right ` X ) E. w e. B w <_s z ) ) |
| 5 | 4 | simprd | |- ( ph -> A. z e. ( _Right ` X ) E. w e. B w <_s z ) |